初中数学中考复习 专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)
展开1.(2022·天津)计算的结果是( )
A.1B.C.D.
2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=( )
A.B.C.D.
3.(2022·四川眉山)化简的结果是( )
A.1B.C.D.
4.(2022·湖南怀化)代数式x,,,x2﹣,,中,属于分式的有( )
A.2个B.3个C.4个D.5个
5.(2022·四川凉山)分式有意义的条件是( )
A.x=-3B.x≠-3C.x≠3D.x≠0
6.(2022·四川南充)已知,且,则的值是( )
A.B.C.D.
7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是( )
A.B.C.D.
8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用天,现在甲、乙两队合做天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为天,下面所列方程中错误的是( )
A.B.C.D.
9.(2022·四川德阳)关于x的方程的解是正数,则a的取值范围是( )
A.a>-1 B.a>-1且a≠0 C.a<-1 D.a<-1且a≠-2
10.(2022·四川遂宁)若关于x的方程无解,则m的值为( )
A.0B.4或6C.6D.0或4
11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程,则方程中x表示( )
A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量
二.填空题
12.(2022·湖北黄冈)若分式有意义,则x的取值范围是________.
13.(2022·浙江湖州)当a=1时,分式的值是______.
14.(2022·湖南怀化)计算﹣=_____.
15.(2022·四川自贡)化简: =____________.
16.(2022·四川泸州)若方程的解使关于的不等式成立,则实数的取值范围是________.
17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a,b,.若,则x的值为___________.
18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
19.(2022·浙江金华)若分式的值为2,则x的值是_______.
20.(2022·四川成都)分式方程的解是_________.
21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为,需香樟数量之比为,并且甲、乙两山需红枫数量之比为.在实际购买时,香樟的价格比预算低,红枫的价格比预算高,香樟购买数量减少了,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.
22.(2022·湖南衡阳)计算:_________.
23.(2022·浙江台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的的值是____.
24.(2022·四川成都)已知,则代数式的值为_________.
25.(2022·湖南常德)方程的解为________.
三.解答题
26.(2022·江苏宿迁)解方程:.
27.(2022·四川泸州)化简:
28.(2022·新疆)先化简,再求值:,其中.
29.(2022·四川乐山)先化简,再求值:,其中.
30.(2022·湖南邵阳)先化简,再从-1,0,1,中选择一个合适的值代入求值..
31.(2022·陕西)化简:.
32.(2022·湖南株洲)先化简,再求值:,其中.
33.(2022·江苏扬州)计算:(1) (2)
34.(2022·江西)以下是某同学化筒分式的部分运算过程:
(1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程.
35.(2022·重庆)计算:
(1);(2).
36.(2022·江苏连云港)化简:.
37.(2022·四川达州)化简求值:,其中.
38.(2022·浙江舟山)观察下面的等式:,,,……
(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数)
(2)请运用分式的有关知识,推理说明这个结论是正确的.
39.(2022·四川凉山)先化简,再求值:,其中m为满足-1<m<4的整数.
40.(2022·山东滨州)先化简,再求值:,其中
41.(2022·重庆)计算:(1);(2).
42.(2022·山东泰安)(1)若单项式与单项式是一多项式中的同类项,求、的值;(2)先化简,再求值:,其中.
43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.
44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.
(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?
45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍.
(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;
(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度.
46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.
(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?
(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?
47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?
49.(2022·四川广元)先化简,再求值:÷(1﹣),其中x是不等式组的整数解.
50.(2022·湖南娄底)先化简,再求值:,其中是满足条件的合适的非负整数.
先化简,再求值:,其中
解:原式
解:原式①
②
③
…
解:
专题04 分式与分式方程(62题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题04 分式与分式方程(62题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题04分式与分式方程原卷版docx、专题04分式与分式方程解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题65概率(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题65概率(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。