初中数学中考复习 2020年中考数学一轮复习培优训练:《相交线与平行线》
展开
这是一份初中数学中考复习 2020年中考数学一轮复习培优训练:《相交线与平行线》,共24页。试卷主要包含了探究,综合与探究,课题学习,问题情境等内容,欢迎下载使用。
2020年中考数学一轮复习培优训练:
《相交线与平行线》
1.平面内有任意一点P和∠1,按要求解答下列问题:
(1)当点P在∠1外部时,如图①,过点P作PA⊥OM,PB⊥ON,垂足分别为A、B,量一量∠APB和∠1的度数,用数学式子表达它们之间的数量关系 ;
(2)当点P在∠1内部时,如图②,以点P为顶点作∠APB,使∠APB的两边分别和∠1的两边垂直,垂足分别为A、B,用数学式子写出∠APB和∠1的数量关系 ;
(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角 .
(4)在图②中,若∠1=50°17',求∠APB的度数.
2.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.
解:∵AB∥CD,(已知)
∴∠B=∠1.( )
同理可证,∠F=∠2.
∵∠BCF=∠1+∠2,
∴∠BCF=∠B+∠F.( )
应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为 度.
拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ= 度.
3.综合与探究
如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.
解:∵AM∥BN,
∴∠ABN+∠A=180°
∵∠A=60°,
∴∠ABN= ,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN= ,( )
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP= .
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
4.探究:
如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
应用:
如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为 (用含β的代数式表示).
5.三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,当0°<∠ACE<90°且点E在直线AC的上方时,解决下列问题:(友情提示:∠A=60°,∠D=30°,∠B=∠E=45°).
(1)①若∠DCE=45°,则∠ACB的度数为 ;
②若∠ACB=140°,则∠DCE的度数为 ;
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出∠ACE的角度所有可能的值(不必说明理由);若不存在,请说明理由.
6.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF= 度,∠FOH= 度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)
7.课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC.
求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,所以∠B=∠EAB,∠C= .
又因为∠EAB+∠BAC+∠DAC=180°,
所以∠B+∠BAC+∠C=180°
解题反思:
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
8.如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.
(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;
(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.
9.如图1,已知AB∥CD,∠B=20°,∠D=110°.
(1)若∠E=50°,请直接写出∠F的度数;
(2)探索∠E与∠F之间满足的数量关系,并说明理由;
(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.
10.问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于 (用含α的式子表示).
11.已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为 ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则= .
12.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED= °;
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.
13.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.
(1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
14.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;
(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.
15.已知:点A、C、B不在同一条直线上,AD∥BE
(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;
(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;
(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.
参考答案
1.解:(1)如图1中,设PA交ON于F.
∵PA⊥OM,PB⊥ON,
∴∠PBF=∠OAF=90°,
∵∠PFB=∠OFA,
∴∠APB=∠1.
故答案为∠APB=∠1.
(2)如图2中,∵∠PAO=∠PBO=90°,
∴∠APB+∠1=180°.
故答案为∠APB+∠1=180°.
(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角相等或互补.
(4)∵∠APB+∠1=180°,
∴∠APB=180°﹣50°17′=129°43′.
2.解:探究::∵AB∥CD,
∴∠B=∠1.(两直线平行内错角相等)
同理可证,∠F=∠2.
∵∠BCF=∠1+∠2,
∴∠BCF=∠B+∠F.(等量代换)
故答案为:两直线平行,内错角相等,等量代换.
应用:由探究可知:∠MFN=∠AMF+∠CNF,
∴∠CNF=∠DNG=115°﹣55°=60°.
故答案为60.
拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,
当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.
故答案为70或290.
3.解:(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=120°
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°.
故答案为120°,2∠PBD,角平分线的定义,60°.
(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.
理由是:∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),
∵BD平分∠PBN(已知),
∴∠PBN=2∠DBN(角平分线的定义),
∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),
即∠APB=2∠ADB.
(3)结论:∠ABC=30°.
理由:∵AM∥BN,∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°
4.解:探究:∵DE∥BC(已知)
∴∠DEF=∠CFE(两直线平行,内错角相等)
∵EF∥AB
∴∠CFE=∠ABC(两直线平行,同位角相等)
∴∠DEF=∠ABC(等量代换)
∵∠ABC=65°
∴∠DEF=65°
故答案为:已知;∠CFE;两直线平行,内错角相等;∠CFE;两直线平行,同位角相等;等量代换;65°.
应用:∵DE∥BC
∴∠ABC=∠D=β
∵EF∥AB
∴∠D+∠DEF=180°
∴∠DEF=180°﹣∠D=180°﹣β,
故答案为:180°﹣β.
5.解:(1)①∵∠ACD=90°,∠DCE=45°,
∴∠ACE=45°,
∴∠ACB=90°+45°=135°,
故答案为:135°;
②∠ACB=140°,∠ACD=∠ECB=90°,
∴∠ACE=140°﹣90°=50°,
∴∠DCE=∠DCA﹣∠ACE=90°﹣50°=40°;
故答案为:40°;
(2)∠ACB与∠DCE互补.理由:
∵∠ACD=90°,
∴∠ACE=90°﹣∠DCE,
又∵∠BCE=90°,
∴∠ACB=90°+90°﹣∠DCE,
∴∠ACB+∠DCE=90°+90°﹣∠DCE+∠DCE=180°,
即∠ACB与∠DCE互补;
(3)存在一组边互相平行,
当∠ACE=45°时,∠ACE=∠E=45°,此时AC∥BE;
当∠ACE=30°时,∠ACB=120°,此时∠A+∠ACB=180°,故AD∥BC.
6.解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,
∴∠OFH=30°,
又∵EG∥FH,
∴∠EOF=∠OFH=30°;
∵∠CHF=50°,OH平分∠CHF,
∴∠FHO=25°,
∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;
故答案为:30,125;
(2)∵FO平分∠AFH,HO平分∠CHF,
∴∠OFH=∠AFH,∠OHF=∠CHF.
∵∠AFH+∠CHF=100°,
∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.
∵EG∥FH,
∴∠EOF=∠OFH,∠GOH=∠OHF.
∴∠EOF+∠GOH=∠OFH+∠OHF=50°.
∵∠EOF+∠GOH+∠FOH=180°,
∴∠FOH=180°﹣(∠EOF+∠GOH )=180°﹣50°=130°.
【拓展】∵∠AFH和∠CHI的平分线交于点O,
∴∠OFH=∠AFH,∠OHI=∠CHI,
∴∠FOH=∠OHI﹣∠OFH
=(∠CHI﹣∠AFH)
=(180°﹣∠CHF﹣∠AFH)
=(180°﹣α)
=90°﹣α.
7.解:(1)∵ED∥BC,
∴∠C=∠DAC,
故答案为:∠DAC;
(2)过C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠D=∠FCD,
∵CF∥AB,
∴∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°,
(3)如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
8.解:(1)①∵AE∥OF
∴∠A=∠BOF
∵OF平分∠COF
∴∠BOC=60°,∠COF=30°
∴∠DOF=180﹣30°=150°
②∵∠BOC=60°
∴∠AOD=60°
∵OF⊥OG
∴∠BOF+∠FOG=90°
∴∠BOG=60°
∵∠BOG+∠DOG+∠AOD=180°
∴∠DOG=60°=∠AOD
∴OD平分∠AOG
(2)设∠AOD=β
∵射线OD是∠AOG的三等分线
∴∠AOD=2∠DOG,或∠DOG=2∠AOD
若∠AOD=2∠DOG
∴∠DOG=β
∵∠BOC=∠AOD,OF平分∠BOC
∴∠BOF=β
∵OF⊥OG
∴∠BOG=90﹣α
∵∠BOG+∠DOG+∠AOD=180°
∴β+90﹣β+β=180°
∴∠β=90°
∴∠BOF=45°
∵OF∥AE
∴∠A=∠BOF=45°
即α=45°
若∠DOG=2∠AOD=2β
∵∠BOC=∠AOD,OF平分∠BOC
∴∠BOF=β
∵OF⊥OG
∴∠BOG=90﹣α
∵∠BOG+∠DOG+∠AOD=180°
∴2β+90﹣β+β=180°
∴∠β=36°
∴∠BOF=18°
∴OF∥AE
∴∠A=∠BOF=18°
∴α=18°
综上所述α为18°或45°
9.解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,
∴EM∥AB∥FN,
∴∠B=∠BEM=20°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=110°,
∴∠DFN=70°,
∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,
∴∠EFD=∠MEF+70°
∴∠EFD=∠BEF+50°=100°;
故答案为:100°;
(2)如图1,分别过点E,F作EM∥AB,FN∥AB,
∴EM∥AB∥FN,
∴∠B=∠BEM=20°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=110°,
∴∠DFN=70°,
∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,
∴∠EFD=∠MEF+70°,
∴∠EFD=∠BEF+50°;
(3)如图2,过点F作FH∥EP,
由(2)知,∠EFD=∠BEF+50°,
设∠BEF=2x°,则∠EFD=(2x+50)°,
∵EP平分∠BEF,GF平分∠EFD,
∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+25)°,
∵FH∥EP,
∴∠PEF=∠EFH=x°,∠P=∠HFG,
∵∠HFG=∠EFG﹣∠EFH=25°,
∴∠P=25°.
10.解:(1)如图1,∵AB∥CD,
∴∠1=∠EGD,
又∵∠2=2∠1,
∴∠2=2∠EGD,
又∵∠FGE=60°,
∴∠EGD=(180°﹣60°)=40°,
∴∠1=40°;
(2)如图2,∵AB∥CD,
∴∠AEG+∠CGE=180°,
即∠AEF+∠FEG+∠EGF+∠FGC=180°,
又∵∠FEG+∠EGF=90°,
∴∠AEF+∠GFC=90°;
(3)如图3,∵AB∥CD,
∴∠AEF+∠CFE=180°,
即∠AEG+∠FEG+∠EFG+∠GFC=180°,
又∵∠GFE=90°,∠GEF=30°,∠AEG=α,
∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
故答案为:60°﹣α.
11.解:(1)如图1,∵AB∥CD,
∴∠END=∠EFB,
∵∠EFB是△MEF的外角,
∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,
故答案为:∠E=∠END﹣∠BME;
(2)如图2,∵AB∥CD,
∴∠CNP=∠NGB,
∵∠NPM是△GPM的外角,
∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,
∵MQ平分∠BME,PN平分∠CNE,
∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,
∵AB∥CD,
∴∠MFE=∠CNE=2∠CNP,
∵△EFM中,∠E+∠FME+∠MFE=180°,
∴∠E+2∠PMA+2∠CNP=180°,
即∠E+2(∠PMA+∠CNP)=180°,
∴∠E+2∠NPM=180°;
(3)如图3,延长AB交DE于G,延长CD交BF于H,
∵AB∥CD,
∴∠CDG=∠AGE,
∵∠ABE是△BEG的外角,
∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①
∵∠ABM=∠MBE,∠CDN=∠NDE,
∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,
∵∠CHB是△DFH的外角,
∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②
由①代入②,可得∠F=∠E,
即.
故答案为:.
12.解:(1)如图,延长DE交AB于H,
∵AB∥CD,
∴∠D=∠AHE=40°,
∵∠AED是△AEH的外角,
∴∠AED=∠A+∠AHE=30°+40°=70°,
故答案为:70;
(2)∠EAF=∠AED+∠EDG.
理由:∵AB∥CD,
∴∠EAF=∠EHC,
∵∠EHC是△DEH的外角,
∴∠EHG=∠AED+∠EDG,
∴∠EAF=∠AED+∠EDG;
(3)∵∠EAI:∠BAI=1:2,
∴设∠EAI=α,则∠BAE=3α,
∵∠AED=22°,∠I=20°,∠DKE=∠AKI,
又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,
∴∠EDK=α﹣2°,
∵DI平分∠EDC,
∴∠CDE=2∠EDK=2α﹣4°,
∵AB∥CD,
∴∠EHC=∠EAF=∠AED+∠EDG,
即3α=22°+2α﹣4°,
解得α=18°,
∴∠EDK=16°,
∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.
13.解:
(1)∵AM∥BN,∴∠A+∠ABC=180°.
∴∠ABC=180°﹣∠A=180°﹣108°=72°.
(2)与∠ABC相等的角是∠ADC、∠DCN.
∵AM∥BN,
∴∠ADC=∠DCN,∠ADC+∠BCD=180°.
∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.
∴∠DCN=72°.
∴∠ADC=∠DCN=∠ABC.
(3)不发生变化.
∵AM∥BN,
∴∠AEB=∠EBC,∠ADB=∠DBC.
∵BD平分∠EBC,
∴∠DBC=∠EBC,
∴∠ADB=∠AEB,
∴∴=.
14.解:(1)∵AM∥BN,
∴∠ABN=180°﹣∠A=120°,
又∵BC,BD分别平分∠ABP和∠PBN,
∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.
(2)不变.理由如下:
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
又∵BD平分∠PBN,
∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.
(3)∵AM∥BN,
∴∠ACB=∠CBN,
又∵∠ACB=∠ABD,
∴∠CBN=∠ABD,
∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,
∴∠ABC=∠CBP=∠DBP=∠DBN,
∴∠ABC=∠ABN=30°.
15.解:(1)在图①中,过点C作CF∥AD,则CF∥BE.
∵CF∥AD∥BE,
∴∠ACF=∠A,∠BCF=180°﹣∠B,
∴∠ACB=∠ACF+∠BCF=180°﹣(∠B﹣∠A)=120°.
(2)在图2中,过点Q作QM∥AD,则QM∥BE.
∵QM∥AD,QM∥BE,
∴∠AQM=∠NAD,∠BQM=∠EBQ.
∵AQ平分∠CAD,BQ平分∠CBE,
∴∠NAD=∠CAD,∠EBQ=∠CBE,
∴∠AQB=∠BQM﹣∠AQM=(∠CBE﹣∠CAD).
∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,
∴2∠AQB+∠C=180°.
(3)∵AC∥QB,
∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,
∴∠ACB=180°﹣∠ACP=180°﹣∠CBE.
∵2∠AQB+∠ACB=180°,
∴∠CAD=∠CBE.
又∵QP⊥PB,
∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,
∴∠CAD=60°,∠CBE=120°,
∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,
∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.
相关试卷
这是一份中考数学一轮复习培优训练:《相交线与平行线》 (含答案),共24页。试卷主要包含了探究,综合与探究,课题学习,问题情境等内容,欢迎下载使用。
这是一份初中数学中考复习 2020年中考数学一轮复习培优训练:《圆》,共39页。试卷主要包含了已知等边△ABC内接于⊙O,感知定义,已知,如图等内容,欢迎下载使用。
这是一份初中数学中考复习 2020年中考数学一轮复习培优训练:《一次函数》,共42页。试卷主要包含了【模型建立】,如图,与y轴交于点B等内容,欢迎下载使用。