终身会员
搜索
    上传资料 赚现金

    吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案)

    立即下载
    加入资料篮
    吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案)第1页
    吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案)第2页
    吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案)

    展开

    这是一份吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题(含答案),共17页。试卷主要包含了对于数列,定义为的“优值”等内容,欢迎下载使用。


    梅河口市第五中学2022~2023学年度下学期期末考试

    高二数学试题

    说明:本试卷分第卷(选择题)和第卷(非选择题)两部分,第14页,第56页,共6页。满分150分,考试时间120分钟。

    第Ⅰ卷(选择题,共80分)

    注意事项:

    1.答卷前,考生务必将自己的姓名、考号填写在答题卡上并将条形码粘贴在粘贴处。

    2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

    3.考试结束后,将本试卷和答题卡一并交回。

    一、单选题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个选项是符合题目要求的,请仔细审题,认真做答)

    1.设,则直线与直线垂直的(   

    A.充要条件        B.必要不充分条件

    C.充分不必要条件      D.既不充分也不必要条件

    2.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.已知四棱是阳马,平面,且,若   

    A      B

    C       D

    3.已知等比数列的各项均为正数,且,则   

    A3     B4     C5     D6

    4.我国古代数学著作《算法统宗》中有如下问题:今有善走者,日增等里,首日行走一百里,九日共行一千二百六十里,问日增几何其大意是:现有一位善于步行的人,第一天行走了一百里,以后每天比前一天多走里,九天他共行走了一千二百六十里,求的值.关于该问题,下列结论正确的是(   

    A          B.此人第三天行走了一百一十里

    C.此人前七天共行走了九百里      D.此人前八天共行走了一千零八十里

    5.如图,圆内有一点为过点的弦,若弦被点平分时,则直线的方程是(   

    A  B  C  D

    6.直线与椭圆交于两点,是椭圆的右焦点,且,则椭圆的离心率为(   

    A     B    C     D

    7.已知抛物线的焦点为,准线为,过的直线与抛物线交于点,与直线交于点,若   

    A1      B3     C2     D4

    8.过直线上一点作圆的切线,切点为.则四边形的面积的最小值为(   

    A      B    C     D

    9.已知椭圆与双曲线具有相同焦点是它们的一个交点,则,记椭圆与双曲线的离心率分别为,则的最小值是   

    A3     B4     C5     D6

    10.对于数列,定义优值.现已知数列优值,记数列的前项和为,则下列说法错误的是(   

    A   B   C   D的最小值为

    二、多选题(本大题共6小题,每小题5分,共30分。在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分,请仔细审题,认真做答)

    11.已知点在圆上,直线,则   

    A.直线过定点

    B.存在实数,使直线与圆相切

    C.直线与圆相交的弦长取值范围为

    D.点到直线距离的取值范围为

    12.已知双曲线,两个焦点记为,下列说法正确的是(   

    A

    B.离心率为

    C.渐近线方程为:

    D.点在双曲线上且线段的中点为,若,则

    13.已知圆和圆的交点为则(    ).

    A.两圆的圆心距

    B.圆上存在两点使得

    C.直线的方程为

    D.圆上的点到直线的最大距离为

    14.已知椭圆的左、右两个端点分别为为椭圆上一动点,,则下列说法不正确的是   

    A的周长为6      B的最大面积为

    C.存在点使得     D的最大值为7

    15.设数列的前项和为,若则下列说法正确的是(   

    A       B

    C        D为等比数列

    16.已知抛物线的焦点为,准线为,过点直线与抛物线交于两点,点上的射影为,则下列说法正确的是   

    A.若,则

    B.以为直径的圆与相切

    C.设,则

    D.过点与抛物线有且仅有一个公共点的直线至多有2

    第Ⅱ卷非选择题,共70分)

    三、填空题(本大题共7小题,每题5分,共35分。请将答案直接填写在答题卡内指定处。)

    17.若___________

    18.若直线与直线平行,则___________

    19.已知数列满足___________

    20.抛物线的焦点为抛物线上一动点,定点,则的最小值为___________

    21.已知动点分别在圆和圆上,动点在直线上,则的最小值是___________

    22.双曲线的左顶点为,右焦点,若直线与该双曲线交于两点,为等腰直角三角形,则该双曲线离心率为___________

    23.已知在数列中,,且是公比为3的等比数列,则使的正整数的值为___________

    四、解答题(本大题共3小题,第2410分,第2510分,第2615分,共35分。)

    24.在四棱中,平面底面,底面是菱形,的中点,

    1)证明:平面

    2)求直线与平面所成角的正弦值.

    25.已知各项均不为零的数列满足,且

    1)证明:为等差数列,并求的通项公式;

    2)令为数列的前项和,求

    26.已知椭圆过点,且该椭圆长轴长是短轴长的二倍.

    1)求椭圆的方程;

    2)设点关于原点对称的点为,过点且斜率存在的直线交椭圆于点,直线分别交直线于点求证为定值.

     

     

     

     

     

    参考答案

    1C

    直线与直线垂直

    ,解得

    2D

    所以

    3D

    4D

    设此人第天走里,则数列是公差为的等差数列,记数列的前项和为

    由题意可得,解得

    5D

    当弦被点平分时,直线与直线垂直,

    因为,所以

    则直线的方程为,即

    6A

    记椭圆的左焦点为

    由对称性可知:四边形为平行四边形,

    四边形为矩形,

    椭圆的离心率

    7B

    设准线与轴的交点为,作垂足分别为

    .根据抛物线定义知

    所以

    ,因为,所以

    所以,又,可得,所以

    所以

    可得,即

    8D

    如图,由切线性质可知,所以,圆的标准方程为,圆心为,半径为,点到直线距离

    ,要使最小,需使

    9A

    为第一象限的交点,

    则由椭圆和双曲线的定义可知,

    中由余弦定理得:

    即:

    ,即:

    当且仅当,即时,取得最小值为3

    10B

    由题意可知,,则

    时,

    时,

    -得,,解得,当时也成立,A正确;

     

    B错误;

    ,当时,即,且,故当9时,的前项和取最小值,最小值为CD正确.

    11AC

    直线

    ,解得,即直线过定点,故A正确;

    ,故点在圆内,

    则直线过圆内定点,即直线与圆相交恒成立,

    且点到直线距离最小值为0

    圆心定点,则

    则圆心到直线距离的最大值为

    此时弦长取最小值为,弦长最大值为圆的直径为4

    12AB

    13CD

    由圆和圆

    可得圆和圆

    则圆的圆心坐标为,半径为2

    的圆心坐标为,半径为

    两圆的圆心距,故A错误;

    将两圆方程作差可得,即得直线的方程为

    直线经过圆的圆心坐标,所以线段是圆的直径,

    故圆中不存在比长的弦;

    的圆心坐标为,半径为2

    圆心到直线的距离为

    所以圆上的点到直线的最大距离为

    14AC

    对于A,因为椭圆,所以

    所以的周长为,故A错误;

    对于B,当为椭圆短轴顶点时,点的距离最大,则的面积最大,

    所以,故B正确;

    对于C,假设存在点使得,则

    所以点的轨迹是以原点为圆心,为直径的圆,则

    因为椭圆上的任一点到原点的最小距离是短轴顶点与原点的距离,即

    可知,圆椭圆没有交点,

    以假设不成立,即不存在点使得,故C错误;

    对于D,由选项A易得,又,所以

    所以,故D正确..

    15BCD

    ,则,即

    数列是以首项,公比的等比数列,则

    显然不符合上式,则

    16AC

    的中点上的投影为的投影为,如图所示:

    对于选项A,因为,所以,故A正确;

    对于选项B,根据抛物线的性质为梯形的中位线,

    ,以为直径的圆与准线相切,故B选项错误;

    对于选项C,因为,所以,故C正确;

    对于选项D,显然直线与抛物线只有一个公共点,设过的直线方程为,联立可得,令,解得,所以直线与抛物线也只有一个公共点,此时有三条直线符合题意,故D错误.

    17

    182

    因为

    所以

    所以

    时,

    重合;

    时,

    ,符合题意.

    故答案为:2

    19

    【详解】求不动点,设,令得:,化简得:

    显然该方程无解,这种情况下一般是周期不大的周期数列,我们只需算出前几项,找规律即可,由题意,,所以

    从而是以6为周期的周期数列

    207

    21

    解:由题知圆的圆心为,半径为

    的圆心为,半径为

    如图,设点关于直线对称的点为

    所以,,解得

    所以,

    所以,,即的最小值是

    故答案为:

    222

    联立可得

    因为点关于轴对称,且为线段的中点,则

    又因为为等腰直角三角形,所以,

    ,所以,,可得

    因此,该双曲线的离心率为

    234

    由题意,知是首项为,公比为3的等比数列,所以,所以

    .所以

    所以,

    解得

    24.(1)证明见详解(2

    1)如图1,连接,设交于点,连接

    因为底面是菱形,所以的中点,又的中点,

    所以,又平面平面

    所以平面

    2)如图2,取的中点

    中,的中点,所以

    所以

    因为平面底面,平面底面

    所以底面,又底面

    所以

    在菱形中,所以是等边三角形,

    所以

    为原点,轴,轴,轴建立空间直角坐标系,

    为平面的一个法向量,则

    ,令,则

    所以直线与平面所成角的正弦值

    25.(1)证明见解析,2

    1)由

    是首项为5,公差为3的等差数列.

    ,故

    2)由(1)知

    所以

    -得:

    26.(12证明见解析

    1)依题意知椭圆的方程为

    椭圆过点,解得

    椭圆的方程为

    2与点关于原点对称,

    当直线轴重合时,不妨设

    则直线,直线

    (定值).

    当直线轴不重合时,设直线

    与椭圆方程联立,化简得

    ,解得

    直线的方程为,则

    直线的方程为,则

    (定值).

    综上,为定值1


     

    相关试卷

    吉林省通化市梅河口市第五中学2023-2024学年高二上学期1月期末数学试题:

    这是一份吉林省通化市梅河口市第五中学2023-2024学年高二上学期1月期末数学试题,共6页。试卷主要包含了设,随机变量的分布列为, 在正方体中,,分别,中点,则, 已知抛物线C等内容,欢迎下载使用。

    2023-2024学年吉林省通化市梅河口市第五中学高二上学期期中数学试题含答案:

    这是一份2023-2024学年吉林省通化市梅河口市第五中学高二上学期期中数学试题含答案,共20页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    吉林省通化市梅河口市第五中学2023-2024学年高二上学期期中数学试题(Word版附答案):

    这是一份吉林省通化市梅河口市第五中学2023-2024学年高二上学期期中数学试题(Word版附答案),共11页。试卷主要包含了单选题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map