所属成套资源:最新备战中考数学第一轮复习分点透练真题(全国通用)
第二十一讲 与圆有关的位置关系-中考数学第一轮复习分点透练真题(全国通用)
展开
这是一份第二十一讲 与圆有关的位置关系-中考数学第一轮复习分点透练真题(全国通用),文件包含第二十一讲与圆有关的位置关系解析版docx、第二十一讲与圆有关的位置关系原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
第二十一讲 与圆有关的位置关系
命题点1 点、直线与圆的位置关系
1.(2021•嘉兴)已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )
A.相离 B.相交 C.相切 D.相交或相切
【答案】D
【解答】解:⊙O的半径为2cm,线段OA=3cm,OB=2cm,
即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,
∴点A在⊙O外,点B在⊙O上,
∴直线AB与⊙O的位置关系为相交或相切,
故选:D.
2.(2021•上海)如图,长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )
A.点C在圆A外,点D在圆A内
B.点C在圆A外,点D在圆A外
C.点C在圆A上,点D在圆A内
D.点C在圆A内,点D在圆A外
【答案】C
【解答】解:两圆内切,圆心距等于半径之差的绝对值,
设圆A的半径为R,
则:AB=R﹣1,
∵AB=4,圆B半径为1,
∴R=5,即圆A的半径等于5,
∵AB=4,BC=AD=3,由勾股定理可知AC=5,
∴AC=5=R,AD=3<R,
∴点C在圆上,点D在圆内,
故选:C.
3.(2021•青海)点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O的半径是 .
【答案】6.5cm或2.5cm
【解答】解:分为两种情况:
①当点在圆内时,如图1,
∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
∴直径AB=4+9=13(cm),
∴半径r=6.5cm;
②当点在圆外时,如图2,
∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
∴直径AB=9﹣4=5(cm),
∴半径r=2.5cm.
综上所述,圆O的半径为6.5cm或2.5cm.
故答案为:6.5cm或2.5cm.
命题点2 切线的性质
类型一 切线性质的简单计算
4.(2021•山西)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为( )
A.15° B.20° C.25° D.30°
【答案】B
【解答】解:连接OA,如图,
∵AB切⊙O于点A,
∴OA⊥AB,
∴∠OAB=90°,
∵∠B=50°,
∴∠AOB=90°﹣50°=40°,
∴∠ADC=∠AOB=20°,
∵AD∥OB,
∴∠OCD=∠ADC=20°.
故选:B.
5.(2021•临沂)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为( )
A.110° B.120° C.125° D.130°
【答案】C
【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,
∵AP、BP是⊙O的切线,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
∴∠ADB=AOB=55°,
又∵圆内接四边形的对角互补,
∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.
故选:C.
6.(2021•泰安)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是( )
A.50° B.48° C.45° D.36°
【答案】B
【解答】解:连接AD,∵BC与⊙A相切于点D,
∴AD⊥BC,
∴∠ADB=∠ADC=90°,
∵AB=6,AG=AD=3,
∴AD=AB,
∴∠B=30°,
∴∠GAD=60°,
∵∠CDE=18°,
∴∠ADE=90°﹣18°=72°,
∵AD=AE,
∴∠AED=∠ADE=72°,
∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣72°﹣72°=36°,
∴∠BAC=∠BAD+∠CAD=60°+36°=96°,
∴∠GFE=GAE=96°=48°,
故选:B.
7.(2021•湘潭)如图,BC为⊙O的直径,弦AD⊥BC于点E,直线l切⊙O于点C,延长OD交l于点F,若AE=2,∠ABC=22.5°,则CF的长度为( )
A.2 B.2 C.2 D.4
【答案】B
【解答】解:∵BC为⊙O的直径,弦AD⊥BC于点E,
∴=,AE=DE=2,
∴∠COD=2∠ABC=45°,
∴△OED是等腰直角三角形,
∴OE=ED=2,
∴OD==2,
∵直线l切⊙O于点C,
∴BC⊥CF,
∴△OCF是等腰直角三角形,
∴CF=OC,
∵OC=OD=2,
∴CF=2,
故选:B.
8.(2021•贺州)如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为( )
A. B. C. D.1
【答案】B
【解答】解:连接OD,过点O作OF⊥BC于F,
则BF=EF,
∵AC是⊙O的切线,
∴OD⊥AC,
∵∠C=90°,OF⊥BC,
∴OD∥BC,四边形ODCF为矩形,
∴△AOD∽△ABC,CF=OD=2,
∴=,即=,
解得:BC=,
∴BF=BC﹣CF=﹣2=,
∴BE=2BF=,
∴CE=BC﹣BE=﹣=,
故选:B.
9.(2021•福建)如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )
A. B. C. D.
【答案】D
【解答】解:连接OC、OD、CD,CD交PA于E,如图,
∵PC,PD与⊙O相切,切点分别为C,D,
∴OC⊥CP,PC=PD,OP平分∠CPD,
∴OP⊥CD,
∴=,
∴∠COB=∠DOB,
∵∠CAD=∠COD,
∴∠COB=∠CAD,
在Rt△OCP中,OP===5,
∴sin∠COP==,
∴sin∠CAD=.
故选:D.
10.(2021•泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是( )
A. B. C. D.
【答案】A
【解答】解:如图,构建如图平面直角坐标系,过点D作DH⊥BC于H.
∵AB是直径,AB=8,
∴OA=OB=4,
∵AD,BC,CD是⊙O的切线,
∴∠DAB=∠ABH=∠DHB=90°,DA=DE,CE=CB,
∴四边形ABHD是矩形,
∴AD=BH,AB=DH=8,
∴CH===6,
设AD=DE=BH=x,则EC=CB=x+6,
∴x+x+6=10,
∴x=2,
∴D(2,4),C(8,﹣4),B(0,﹣4),
∴直线OC的解析式为y=﹣x,直线BD的解析式为y=4x﹣4,
由,解得,
∴F(,﹣),
∴BF==,
解法二:设DH交OC于G,利用△OBF∽△GDF求解即可.
故选:A.
11.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O的切线,T为切点,连结OT,则PT= .
【答案】
【解答】解:∵PT是⊙O的切线,T为切点,
∴OT⊥PT,
在Rt△OPT中,OT=1,OP=2,
∴PT===,
故:PT=.
12.(2021•南京)如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ= °.
【答案】180
【解答】解:如图,设圆心为O,连接OA,OB,OC,OD和OE,
∵FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,
∴∠OAF=∠OBG=∠OCH=∠ODI=∠OEJ=90°,
即(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)=90°×5=450°,
∵OA=OB=OC=OD=OE,
∴∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,OEA=∠OAE,
∴∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=×五边形ABCDE内角和==270°,
∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)﹣(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°﹣270°=180°,
故答案为:180.
13.(2021•荆州)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF∥OC交AB于F,过点B的切线交AC的延长线于E.若AD=4,DF=,则BE= .
【答案】
【解答】解:∵OD⊥AC,AD=4,
∴AD=DC=4,
∵DF∥OC,DF=,
∴OC=2DF=5,
在Rt△COD中,OD===3,
∵BE是⊙O的切线,
∴AB⊥BE,
∵OD⊥AD,
∴∠ADO=∠ABE,
∵∠OAD=∠EAB,
∴△AOD∽△AEB,
∴=,即=,
解得:BE=,
故答案为:.
类型二 切线性质的相关证明与计算
14.(2021•百色)如图,PM、PN是⊙O的切线,切点分别是A、B,过点O的直线CE∥PN,交⊙O于点C、D,交PM于点E,AD的延长线交PN于点F,若BC∥PM.
(1)求证:∠P=45°;
(2)若CD=6,求PF的长.
【答案】(1) 略 (2)略
【解答】解:(1)证明:连接OB,
∵PM、PN切⊙O于点A、B,
∴OA⊥PM,OB⊥PN,
∵CE∥PN,
∴OB⊥CE,
∵OB=OC,
∴∠C=45°,
∵BC∥PM,
∴四边形PBCE是平行四边形,
∴∠P=∠C=45°;
(2)∵CD=6,
∴OB=OA=OD=3,
由(1)得∠1=∠P=45°,
∴AE=OA=3,
∴OE==3=BC,
∴PE=BC=3,ED=OE﹣OD=3﹣3,
∵ED∥PF,
∴△AED∽△APF,
∴=,
即=,
∴PF=3.
15.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.
(1)求证:AF=AE;
(2)若AB=8,BC=2,求AF的长.
【答案】(1)略 (2)AF=
【解答】(1)证明:连接AD,
∵AB是⊙O直径,
∴∠ADB=∠ADF=90°,
∴∠F+∠DAF=90°,
∵AF是⊙O的切线,
∴∠FAB=90°,
∴∠F+∠ABF=90°,
∴∠DAF=∠ABF,
∵=,
∴∠ABF=∠CAD,
∴∠DAF=∠CAD,
∴∠F=∠AEF,
∴AF=AE;
(2)解:∵AB是⊙O直径,
∴∠C=90°,
∵AB=8,BC=2,
∴AC===2,
∵∠C=∠FAB=90°,∠CEB=∠AEF=∠F,
∴△BCE∽△BAF,
∴=,即=,
∴CE=AF,
∵AF=AE,
∴CE=AE,
∵AE+CE=AC=2,
∴AE=,
∴AF=AE=.
16.(2021•随州)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
(1)求证:AB=BC;
(2)若⊙O的直径AB为9,sinA=.
①求线段BF的长;
②求线段BE的长.
【答案】(1) AB=BC (2)①BF=1②BE=
【解答】解:(1)证明:连接OD,如图1,
∵DE是⊙O的切线,
∴OD⊥DE.
∵BC⊥DE,
∴OD∥BC.
∴∠ODA=∠C.
∵OA=OD,
∴∠ODA=∠A.
∴∠A=∠C.
∴AB=BC.
(2)①连接BD,则∠ADB=90°,如图2,
在Rt△ABD中,
∵sinA=,AB=9,
∴BD=3.
∵OB=OD,
∴∠ODB=∠OBD.
∵∠OBD+∠A=∠FDB+∠ODB=90°,
∴∠A=∠FDB.
∴sin∠A=sin∠FDB.
在Rt△BDF中,
∵sin∠BDF==,
∴BF=1.
②由(1)知:OD∥BF,
∴△EBF∽△EOD.
∴.
即:.
解得:BE=.
17.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.
请仅就图2的情形解答下列问题.
(1)求证:∠PAO=2∠PBO;
(2)若⨀O的半径为5,AP=,求BP的长.
【答案】(1)略 (2)BP长为3.
【解答】(1)证明:如图①,
连接OP,延长BO与圆交于点C,则OP=OB=OC,
∵AP与⨀O相切于点P,
∴∠APO=90°,
∴∠PAO+∠AOP=90°,
∵MO⊥CN,
∴∠AOP+∠POC=90°,
∴∠PAO=∠POC,
∵OP=OB,
∴∠OPB=∠PBO,
∴∠POC=∠OPB+∠PBO=2∠PBO,
∴∠PAO=2∠PBO,
(2)解:如图②所示,
连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,
则有:AO==,
由(1)可知∠POC=∠PAO,
∴Rt△POD~Rt△OAP,
∴,即,解得PD=3,OD=4,
∴CD=OC﹣OD=1,
在Rt△PDC中,PC==,
∵CB为圆的直径,
∴∠BPC=90°,
∴BP===3,
故BP长为3.
命题点3 与切线的判定及性质有关的计算
18.(2021•铜仁市)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若BF=10,EF=20,求⊙O的半径和AD的长.
【答案】(1)略 (2)⊙O的半径为15 (3)AD=9
【解答】(1)证明:连接OE,
∵AB是⊙O的直径,
∴∠AEB=90°,
即∠AEO+∠OEB=90°,
∵AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠BEF=∠CAE,
∴∠BEF=∠BAE,
∵OA=OE,
∴∠BAE=∠AEO,
∴∠BEF=∠AEO,
∴∠BEF+∠OEB=90°,
∴∠OEF=90°,
∴OE⊥EF,
∵OE是⊙O的半径,
∴EF是⊙O的切线;
(2)解:如图,设⊙O的半径为x,则OE=OB=x,
∴OF=x+10,
在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,
∴x2+202=(x+10)2,
解得:x=15,
∴⊙O的半径为15;
∵∠BEF=∠BAE,∠F=∠F,
∴△EBF∽△AEF,
∴==,
设BE=a,则AE=2a,
由勾股定理得:AE2+BE2=AB2,
即a2+(2a)2=302,
解得:a=6,
∴AE=2a=12,
∵∠CAE=∠BAE,
∴,
∴OE⊥BC,
∵OE⊥EF,
∴BC∥EF,
∴,即,
∴AD=9.
19.(2021•青海)如图,在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.
(1)求证:△BGD∽△DMA;
(2)求证:直线MN是⊙O的切线.
【答案】(1) △BGD∽△DMA (2)直线MN是⊙O的切线
【解答】证明:(1)∵MN⊥AC,BG⊥MN,
∴∠BGD=∠DMA=90°,
∵以AB为直径的⊙O交BC于点D,
∴AD⊥BC,即∠ADC=90°,
∴∠ADM+∠CDM=90°,
∵∠DBG+∠BDG=90°,∠CDM=∠BDG,
∴∠DBG=∠ADM,
∴△BGD∽△DMA;
(2)连接OD.
∴BO=OA,BD=DC,
∴OD是△ABC的中位线,
∴OD∥AC,
又∵MN⊥AC,
∴OD⊥MN,
∴直线MN是⊙O的切线.
20.(2021•本溪)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.
(1)求证:EF是⊙O的切线;
(2)若OC=9,AC=4,AE=8,求BF的长.
【答案】(1) 略 (2)BF=
【解答】证明:(1)连接OE,
∵OA=OE,
∴∠OEA=∠OAE,
在Rt△ABC中,∠ACB=90°,
∴∠BAC+∠B=90°,
∵BF=EF,
∴∠B=∠BEF,
∵∠OAE=∠BAC,
∴∠OEA=∠BAC,
∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,
∴OE⊥EF,
∵OE是⊙O的半径,
∴EF是⊙O的切线;
(2)解:连接DE,
∵OC=9,AC=4,
∴OA=OC﹣AC=5,
∵AD=2OA,
∴AD=10,
∵AD是⊙O的直径,
∴∠AED=90°,
在Rt△ADE中,
∵DE===6,
∴cos∠DAE===,
在Rt△ABC中,cos∠BAC==,
∵∠BAC=∠DAE,
∴=,
∴AB=5,
∴BE=AB+AE=5+8=13,
∵OD=OE,
∴∠ODE=∠OED,
∵EF是⊙O的切线,
∴∠FEO=90°,
∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,
∴∠FEB=∠OED,
∴∠B=∠FEB=∠OED=∠ODE,
∴△FBE∽△ODE,
∴=,
∴=,
∴BF=.
21.(2021•云南)如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.
(1)求证:DC是⊙O的切线;
(2)若=,BE=3,求DA的长.
【答案】(1)略 (2)AD的长为
【解答】(1)证明:连接OC,
∵OC=OB,
∴∠OCB=∠OBC,
∵∠ABC=∠DCA,
∴∠OCB=∠DCA,
又∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∴∠DCA+∠ACO=90°,
即∠DCO=90°,
∴DC⊥OC,
∵OC是半径,
∴DC是⊙O的切线;
(2)解:∵,且OA=OB,
设OA=OB=2x,OD=3x,
∴DB=OD+OB=5x,
∴,
又∵BE⊥DC,DC⊥OC,
∴OC∥BE,
∴△DCO∽△DEB,
∴,
∵BE=3,
∴OC=,
∴2x=,
∴x=,
∴AD=OD﹣OA=x=,
即AD的长为.
22.(2021•连云港)如图,Rt△ABC中,∠ABC=90°,以点C为圆心,CB为半径作⊙C,D为⊙C上一点,连接AD、CD,AB=AD,AC平分∠BAD.
(1)求证:AD是⊙C的切线;
(2)延长AD、BC相交于点E,若S△EDC=2S△ABC,求tan∠BAC的值.
【答案】(1)AD是⊙C的切线 (2)tan∠BAC==
【解答】(1)证明:∵AC平分∠BAD,
∴∠BAC=∠DAC.
又∵AB=AD,AC=AC,
∴△BAC≌△DAC(SAS),
∴∠ADC=∠ABC=90°,
∴CD⊥AD,
即AD是⊙C的切线;
(2)解:由(1)可知,∠EDC=∠ABC=90°,
又∠E=∠E,
∴△EDC∽△EBA.
∵S△EDC=2S△ABC,且△BAC≌△DAC,
∴S△EDC:S△EBA=1:2,
∴DC:BA=1:.
∵DC=CB,
∴CB:BA=1:.
∴tan∠BAC==.
23.(2021•兰州)如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD=AC.
(1)求证:AD是⊙O的切线;
(2)若tan∠ACE=,OE=3,求BC的长.
【答案】(1)AD是⊙O的切线 (2)BC=8
【解答】解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACE+∠BCE=90°,
∵AD=AC,BE=BC,
∴∠ACE=∠D,∠BCE=∠BEC,
又∵∠BEC=∠AED,
∴∠AED+∠D=90°,
∴∠DAE=90°,
即AD⊥AE,
∵OA是半径,
∴AD是⊙O的切线;
(2)由tan∠ACE==tan∠D可设AE=a,则AD=3a=AC,
∵OE=3,
∴OA=a+3,AB=2a+6,
∴BE=a+3+3=a+6=BC,
在Rt△ABC中,由勾股定理得,
AB2=BC2+AC2,
即(2a+6)2=(a+6)2+(3a)2,
解得a1=0(舍去),a2=2,
∴BC=a+6=8.
24.(2021•梧州)如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.
(1)求证:AC是⊙O的切线;
(2)若OC=3,DE=2,求tan∠F的值.
【答案】(1)略 (2)tanF=
【解答】(1)证明:∵DF∥AC,
∴∠F=∠OAC,
∵∠OAB=∠F,
∴∠OAB=∠OAC,
∴OA是∠BAC的角平分线,
∵⊙O与AD相切于点B,
∴OB是⊙O的半径,OB⊥AD,
∵∠ACD=90°,
∴OC⊥AC,
∴OB=OC,
∴点C在⊙O上,
∵OC⊥AC,
∴AC是⊙O的切线;
(2)解:由(1)知:OB=OC=3,OC是⊙O的半径,
∴CE是⊙O的直径,
∴CE=2OC=6,
∴CD=CE+DE=6+2=8,OD=OE+DE=OC+DE=3+2=5,
在Rt△OBD中,由勾股定理得:BD===4,
∵∠OBD=∠ACD=90°,∠ODB=∠ADC,
∴△ODB∽△ADC,
∴=,
∴AC===6,
∵∠F=∠OAC,
∴tanF=tan∠OAC===.
25.(2021•新疆)如图,AC是⊙O的直径,BC,BD是⊙O的弦,M为BC的中点,OM与BD交于点F,过点D作DE⊥BC,交BC的延长线于点E,且CD平分∠ACE.
(1)求证:DE是⊙O的切线;
(2)求证:∠CDE=∠DBE;
(3)若DE=6,tan∠CDE=,求BF的长.
【答案】(1)略 (2)略 (3) BF=
【解答】(1)证明:连接OD,如图:
∵CD平分∠ACE,
∴∠OCD=∠DCE,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠DCE=∠ODC,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)证明:连接AB,如图:
∵AC是⊙O的直径,
∴∠ABC=90°,即∠ABD+∠DBC=90°,
∵=,
∴∠ABD=∠ACD,
∵∠ACD=∠ODC,
∴∠ABD=∠ODC,
∴∠ODC+∠DBC=90°,
∵∠ODC+∠CDE=90°,
∴∠CDE=∠DBC,即∠CDE=∠DBE;
(3)解:Rt△CDE中,DE=6,tan∠CDE=,
∴=,
∴CE=4,
由(2)知∠CDE=∠DBE,
Rt△BDE中,DE=6,tan∠DBE=,
∴=,
∴BE=9,
∴BC=BE﹣CE=5,
∵M为BC的中点,
∴OM⊥BC,BM=BC=,
Rt△BFM中,BM=,tan∠DBE=,
∴=,
∴FM=,
∴BF==.
相关试卷
这是一份第二十五讲 图形的对称、平移、旋转与位似-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十五讲图形的对称平移旋转与位似解析版docx、第二十五讲图形的对称平移旋转与位似原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份第二十四讲 视图与投影-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十四讲视图与投影解析版docx、第二十四讲视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份第二十三讲 尺规作图与无刻度直尺作图-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十三讲尺规作图与无刻度直尺作图解析版docx、第二十三讲尺规作图与无刻度直尺作图原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。