终身会员
搜索
    上传资料 赚现金

    第二十一讲 与圆有关的位置关系-中考数学第一轮复习分点透练真题(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第二十一讲 与圆有关的位置关系 (原卷版).docx
    • 第二十一讲 与圆有关的位置关系 (解析版).docx
    第二十一讲 与圆有关的位置关系  (原卷版)第1页
    第二十一讲 与圆有关的位置关系  (原卷版)第2页
    第二十一讲 与圆有关的位置关系  (原卷版)第3页
    第二十一讲 与圆有关的位置关系  (解析版)第1页
    第二十一讲 与圆有关的位置关系  (解析版)第2页
    第二十一讲 与圆有关的位置关系  (解析版)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第二十一讲 与圆有关的位置关系-中考数学第一轮复习分点透练真题(全国通用)

    展开

    这是一份第二十一讲 与圆有关的位置关系-中考数学第一轮复习分点透练真题(全国通用),文件包含第二十一讲与圆有关的位置关系解析版docx、第二十一讲与圆有关的位置关系原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
     第二十一讲 与圆有关的位置关系
    命题点1 点、直线与圆的位置关系
    1.(2021•嘉兴)已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为(  )
    A.相离 B.相交 C.相切 D.相交或相切
    【答案】D
    【解答】解:⊙O的半径为2cm,线段OA=3cm,OB=2cm,
    即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,
    ∴点A在⊙O外,点B在⊙O上,
    ∴直线AB与⊙O的位置关系为相交或相切,
    故选:D.
    2.(2021•上海)如图,长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是(  )

    A.点C在圆A外,点D在圆A内
    B.点C在圆A外,点D在圆A外
    C.点C在圆A上,点D在圆A内
    D.点C在圆A内,点D在圆A外
    【答案】C
    【解答】解:两圆内切,圆心距等于半径之差的绝对值,
    设圆A的半径为R,
    则:AB=R﹣1,
    ∵AB=4,圆B半径为1,
    ∴R=5,即圆A的半径等于5,
    ∵AB=4,BC=AD=3,由勾股定理可知AC=5,
    ∴AC=5=R,AD=3<R,
    ∴点C在圆上,点D在圆内,
    故选:C.
    3.(2021•青海)点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O的半径是    .
    【答案】6.5cm或2.5cm
    【解答】解:分为两种情况:

    ①当点在圆内时,如图1,
    ∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
    ∴直径AB=4+9=13(cm),
    ∴半径r=6.5cm;
    ②当点在圆外时,如图2,
    ∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
    ∴直径AB=9﹣4=5(cm),
    ∴半径r=2.5cm.
    综上所述,圆O的半径为6.5cm或2.5cm.
    故答案为:6.5cm或2.5cm.
    命题点2 切线的性质
    类型一 切线性质的简单计算
    4.(2021•山西)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为(  )

    A.15° B.20° C.25° D.30°
    【答案】B
    【解答】解:连接OA,如图,
    ∵AB切⊙O于点A,
    ∴OA⊥AB,
    ∴∠OAB=90°,
    ∵∠B=50°,
    ∴∠AOB=90°﹣50°=40°,
    ∴∠ADC=∠AOB=20°,
    ∵AD∥OB,
    ∴∠OCD=∠ADC=20°.
    故选:B.
    5.(2021•临沂)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为(  )

    A.110° B.120° C.125° D.130°
    【答案】C
    【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,

    ∵AP、BP是⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
    ∴∠ADB=AOB=55°,
    又∵圆内接四边形的对角互补,
    ∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.
    故选:C.
    6.(2021•泰安)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是(  )

    A.50° B.48° C.45° D.36°
    【答案】B
    【解答】解:连接AD,∵BC与⊙A相切于点D,
    ∴AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∵AB=6,AG=AD=3,
    ∴AD=AB,
    ∴∠B=30°,
    ∴∠GAD=60°,
    ∵∠CDE=18°,
    ∴∠ADE=90°﹣18°=72°,
    ∵AD=AE,
    ∴∠AED=∠ADE=72°,
    ∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣72°﹣72°=36°,
    ∴∠BAC=∠BAD+∠CAD=60°+36°=96°,
    ∴∠GFE=GAE=96°=48°,
    故选:B.

    7.(2021•湘潭)如图,BC为⊙O的直径,弦AD⊥BC于点E,直线l切⊙O于点C,延长OD交l于点F,若AE=2,∠ABC=22.5°,则CF的长度为(  )

    A.2 B.2 C.2 D.4
    【答案】B
    【解答】解:∵BC为⊙O的直径,弦AD⊥BC于点E,
    ∴=,AE=DE=2,
    ∴∠COD=2∠ABC=45°,
    ∴△OED是等腰直角三角形,
    ∴OE=ED=2,
    ∴OD==2,
    ∵直线l切⊙O于点C,
    ∴BC⊥CF,
    ∴△OCF是等腰直角三角形,
    ∴CF=OC,
    ∵OC=OD=2,
    ∴CF=2,
    故选:B.
    8.(2021•贺州)如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为(  )

    A. B. C. D.1
    【答案】B
    【解答】解:连接OD,过点O作OF⊥BC于F,
    则BF=EF,
    ∵AC是⊙O的切线,
    ∴OD⊥AC,
    ∵∠C=90°,OF⊥BC,
    ∴OD∥BC,四边形ODCF为矩形,
    ∴△AOD∽△ABC,CF=OD=2,
    ∴=,即=,
    解得:BC=,
    ∴BF=BC﹣CF=﹣2=,
    ∴BE=2BF=,
    ∴CE=BC﹣BE=﹣=,
    故选:B.

    9.(2021•福建)如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于(  )

    A. B. C. D.
    【答案】D
    【解答】解:连接OC、OD、CD,CD交PA于E,如图,
    ∵PC,PD与⊙O相切,切点分别为C,D,
    ∴OC⊥CP,PC=PD,OP平分∠CPD,
    ∴OP⊥CD,
    ∴=,
    ∴∠COB=∠DOB,
    ∵∠CAD=∠COD,
    ∴∠COB=∠CAD,
    在Rt△OCP中,OP===5,
    ∴sin∠COP==,
    ∴sin∠CAD=.
    故选:D.

    10.(2021•泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是(  )

    A. B. C. D.
    【答案】A
    【解答】解:如图,构建如图平面直角坐标系,过点D作DH⊥BC于H.

    ∵AB是直径,AB=8,
    ∴OA=OB=4,
    ∵AD,BC,CD是⊙O的切线,
    ∴∠DAB=∠ABH=∠DHB=90°,DA=DE,CE=CB,
    ∴四边形ABHD是矩形,
    ∴AD=BH,AB=DH=8,
    ∴CH===6,
    设AD=DE=BH=x,则EC=CB=x+6,
    ∴x+x+6=10,
    ∴x=2,
    ∴D(2,4),C(8,﹣4),B(0,﹣4),
    ∴直线OC的解析式为y=﹣x,直线BD的解析式为y=4x﹣4,
    由,解得,
    ∴F(,﹣),
    ∴BF==,
    解法二:设DH交OC于G,利用△OBF∽△GDF求解即可.

    故选:A.
    11.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O的切线,T为切点,连结OT,则PT=  .

    【答案】
    【解答】解:∵PT是⊙O的切线,T为切点,
    ∴OT⊥PT,
    在Rt△OPT中,OT=1,OP=2,
    ∴PT===,
    故:PT=.
    12.(2021•南京)如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=   °.

    【答案】180
    【解答】解:如图,设圆心为O,连接OA,OB,OC,OD和OE,
    ∵FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,
    ∴∠OAF=∠OBG=∠OCH=∠ODI=∠OEJ=90°,
    即(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)=90°×5=450°,
    ∵OA=OB=OC=OD=OE,
    ∴∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,OEA=∠OAE,
    ∴∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=×五边形ABCDE内角和==270°,
    ∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)﹣(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°﹣270°=180°,
    故答案为:180.

    13.(2021•荆州)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF∥OC交AB于F,过点B的切线交AC的延长线于E.若AD=4,DF=,则BE=   .

    【答案】
    【解答】解:∵OD⊥AC,AD=4,
    ∴AD=DC=4,
    ∵DF∥OC,DF=,
    ∴OC=2DF=5,
    在Rt△COD中,OD===3,
    ∵BE是⊙O的切线,
    ∴AB⊥BE,
    ∵OD⊥AD,
    ∴∠ADO=∠ABE,
    ∵∠OAD=∠EAB,
    ∴△AOD∽△AEB,
    ∴=,即=,
    解得:BE=,
    故答案为:.
    类型二 切线性质的相关证明与计算
    14.(2021•百色)如图,PM、PN是⊙O的切线,切点分别是A、B,过点O的直线CE∥PN,交⊙O于点C、D,交PM于点E,AD的延长线交PN于点F,若BC∥PM.
    (1)求证:∠P=45°;
    (2)若CD=6,求PF的长.

    【答案】(1) 略 (2)略
    【解答】解:(1)证明:连接OB,

    ∵PM、PN切⊙O于点A、B,
    ∴OA⊥PM,OB⊥PN,
    ∵CE∥PN,
    ∴OB⊥CE,
    ∵OB=OC,
    ∴∠C=45°,
    ∵BC∥PM,
    ∴四边形PBCE是平行四边形,
    ∴∠P=∠C=45°;
    (2)∵CD=6,
    ∴OB=OA=OD=3,
    由(1)得∠1=∠P=45°,
    ∴AE=OA=3,
    ∴OE==3=BC,
    ∴PE=BC=3,ED=OE﹣OD=3﹣3,
    ∵ED∥PF,
    ∴△AED∽△APF,
    ∴=,
    即=,
    ∴PF=3.
    15.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.
    (1)求证:AF=AE;
    (2)若AB=8,BC=2,求AF的长.

    【答案】(1)略 (2)AF=
    【解答】(1)证明:连接AD,
    ∵AB是⊙O直径,
    ∴∠ADB=∠ADF=90°,
    ∴∠F+∠DAF=90°,
    ∵AF是⊙O的切线,
    ∴∠FAB=90°,
    ∴∠F+∠ABF=90°,
    ∴∠DAF=∠ABF,
    ∵=,
    ∴∠ABF=∠CAD,
    ∴∠DAF=∠CAD,
    ∴∠F=∠AEF,
    ∴AF=AE;
    (2)解:∵AB是⊙O直径,
    ∴∠C=90°,
    ∵AB=8,BC=2,
    ∴AC===2,
    ∵∠C=∠FAB=90°,∠CEB=∠AEF=∠F,
    ∴△BCE∽△BAF,
    ∴=,即=,
    ∴CE=AF,
    ∵AF=AE,
    ∴CE=AE,
    ∵AE+CE=AC=2,
    ∴AE=,
    ∴AF=AE=.

    16.(2021•随州)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
    (1)求证:AB=BC;
    (2)若⊙O的直径AB为9,sinA=.
    ①求线段BF的长;
    ②求线段BE的长.

    【答案】(1) AB=BC (2)①BF=1②BE=
    【解答】解:(1)证明:连接OD,如图1,

    ∵DE是⊙O的切线,
    ∴OD⊥DE.
    ∵BC⊥DE,
    ∴OD∥BC.
    ∴∠ODA=∠C.
    ∵OA=OD,
    ∴∠ODA=∠A.
    ∴∠A=∠C.
    ∴AB=BC.
    (2)①连接BD,则∠ADB=90°,如图2,

    在Rt△ABD中,
    ∵sinA=,AB=9,
    ∴BD=3.
    ∵OB=OD,
    ∴∠ODB=∠OBD.
    ∵∠OBD+∠A=∠FDB+∠ODB=90°,
    ∴∠A=∠FDB.
    ∴sin∠A=sin∠FDB.
    在Rt△BDF中,
    ∵sin∠BDF==,
    ∴BF=1.
    ②由(1)知:OD∥BF,
    ∴△EBF∽△EOD.
    ∴.
    即:.
    解得:BE=.
    17.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.
    小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.
    请仅就图2的情形解答下列问题.
    (1)求证:∠PAO=2∠PBO;
    (2)若⨀O的半径为5,AP=,求BP的长.

    【答案】(1)略 (2)BP长为3.
    【解答】(1)证明:如图①,

    连接OP,延长BO与圆交于点C,则OP=OB=OC,
    ∵AP与⨀O相切于点P,
    ∴∠APO=90°,
    ∴∠PAO+∠AOP=90°,
    ∵MO⊥CN,
    ∴∠AOP+∠POC=90°,
    ∴∠PAO=∠POC,
    ∵OP=OB,
    ∴∠OPB=∠PBO,
    ∴∠POC=∠OPB+∠PBO=2∠PBO,
    ∴∠PAO=2∠PBO,
    (2)解:如图②所示,

    连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,
    则有:AO==,
    由(1)可知∠POC=∠PAO,
    ∴Rt△POD~Rt△OAP,
    ∴,即,解得PD=3,OD=4,
    ∴CD=OC﹣OD=1,
    在Rt△PDC中,PC==,
    ∵CB为圆的直径,
    ∴∠BPC=90°,
    ∴BP===3,
    故BP长为3.
    命题点3 与切线的判定及性质有关的计算
    18.(2021•铜仁市)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若BF=10,EF=20,求⊙O的半径和AD的长.

    【答案】(1)略 (2)⊙O的半径为15 (3)AD=9
    【解答】(1)证明:连接OE,

    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    即∠AEO+∠OEB=90°,
    ∵AE平分∠CAB,
    ∴∠CAE=∠BAE,
    ∵∠BEF=∠CAE,
    ∴∠BEF=∠BAE,
    ∵OA=OE,
    ∴∠BAE=∠AEO,
    ∴∠BEF=∠AEO,
    ∴∠BEF+∠OEB=90°,
    ∴∠OEF=90°,
    ∴OE⊥EF,
    ∵OE是⊙O的半径,
    ∴EF是⊙O的切线;
    (2)解:如图,设⊙O的半径为x,则OE=OB=x,
    ∴OF=x+10,
    在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,
    ∴x2+202=(x+10)2,
    解得:x=15,
    ∴⊙O的半径为15;

    ∵∠BEF=∠BAE,∠F=∠F,
    ∴△EBF∽△AEF,
    ∴==,
    设BE=a,则AE=2a,
    由勾股定理得:AE2+BE2=AB2,
    即a2+(2a)2=302,
    解得:a=6,
    ∴AE=2a=12,
    ∵∠CAE=∠BAE,
    ∴,
    ∴OE⊥BC,
    ∵OE⊥EF,
    ∴BC∥EF,
    ∴,即,
    ∴AD=9.
    19.(2021•青海)如图,在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.
    (1)求证:△BGD∽△DMA;
    (2)求证:直线MN是⊙O的切线.

    【答案】(1) △BGD∽△DMA (2)直线MN是⊙O的切线
    【解答】证明:(1)∵MN⊥AC,BG⊥MN,
    ∴∠BGD=∠DMA=90°,
    ∵以AB为直径的⊙O交BC于点D,
    ∴AD⊥BC,即∠ADC=90°,
    ∴∠ADM+∠CDM=90°,
    ∵∠DBG+∠BDG=90°,∠CDM=∠BDG,
    ∴∠DBG=∠ADM,
    ∴△BGD∽△DMA;
    (2)连接OD.
    ∴BO=OA,BD=DC,
    ∴OD是△ABC的中位线,
    ∴OD∥AC,
    又∵MN⊥AC,
    ∴OD⊥MN,
    ∴直线MN是⊙O的切线.

    20.(2021•本溪)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.
    (1)求证:EF是⊙O的切线;
    (2)若OC=9,AC=4,AE=8,求BF的长.

    【答案】(1) 略 (2)BF=
    【解答】证明:(1)连接OE,
    ∵OA=OE,
    ∴∠OEA=∠OAE,
    在Rt△ABC中,∠ACB=90°,
    ∴∠BAC+∠B=90°,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠OAE=∠BAC,
    ∴∠OEA=∠BAC,
    ∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,
    ∴OE⊥EF,
    ∵OE是⊙O的半径,
    ∴EF是⊙O的切线;
    (2)解:连接DE,
    ∵OC=9,AC=4,
    ∴OA=OC﹣AC=5,
    ∵AD=2OA,
    ∴AD=10,
    ∵AD是⊙O的直径,
    ∴∠AED=90°,
    在Rt△ADE中,
    ∵DE===6,
    ∴cos∠DAE===,
    在Rt△ABC中,cos∠BAC==,
    ∵∠BAC=∠DAE,
    ∴=,
    ∴AB=5,
    ∴BE=AB+AE=5+8=13,
    ∵OD=OE,
    ∴∠ODE=∠OED,
    ∵EF是⊙O的切线,
    ∴∠FEO=90°,
    ∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,
    ∴∠FEB=∠OED,
    ∴∠B=∠FEB=∠OED=∠ODE,
    ∴△FBE∽△ODE,
    ∴=,
    ∴=,
    ∴BF=.

    21.(2021•云南)如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.
    (1)求证:DC是⊙O的切线;
    (2)若=,BE=3,求DA的长.

    【答案】(1)略 (2)AD的长为
    【解答】(1)证明:连接OC,

    ∵OC=OB,
    ∴∠OCB=∠OBC,
    ∵∠ABC=∠DCA,
    ∴∠OCB=∠DCA,
    又∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACO+∠OCB=90°,
    ∴∠DCA+∠ACO=90°,
    即∠DCO=90°,
    ∴DC⊥OC,
    ∵OC是半径,
    ∴DC是⊙O的切线;
    (2)解:∵,且OA=OB,
    设OA=OB=2x,OD=3x,
    ∴DB=OD+OB=5x,
    ∴,
    又∵BE⊥DC,DC⊥OC,
    ∴OC∥BE,
    ∴△DCO∽△DEB,
    ∴,
    ∵BE=3,
    ∴OC=,
    ∴2x=,
    ∴x=,
    ∴AD=OD﹣OA=x=,
    即AD的长为.
    22.(2021•连云港)如图,Rt△ABC中,∠ABC=90°,以点C为圆心,CB为半径作⊙C,D为⊙C上一点,连接AD、CD,AB=AD,AC平分∠BAD.
    (1)求证:AD是⊙C的切线;
    (2)延长AD、BC相交于点E,若S△EDC=2S△ABC,求tan∠BAC的值.

    【答案】(1)AD是⊙C的切线 (2)tan∠BAC==
    【解答】(1)证明:∵AC平分∠BAD,
    ∴∠BAC=∠DAC.
    又∵AB=AD,AC=AC,
    ∴△BAC≌△DAC(SAS),
    ∴∠ADC=∠ABC=90°,
    ∴CD⊥AD,
    即AD是⊙C的切线;
    (2)解:由(1)可知,∠EDC=∠ABC=90°,
    又∠E=∠E,
    ∴△EDC∽△EBA.
    ∵S△EDC=2S△ABC,且△BAC≌△DAC,
    ∴S△EDC:S△EBA=1:2,
    ∴DC:BA=1:.
    ∵DC=CB,
    ∴CB:BA=1:.
    ∴tan∠BAC==.
    23.(2021•兰州)如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD=AC.
    (1)求证:AD是⊙O的切线;
    (2)若tan∠ACE=,OE=3,求BC的长.

    【答案】(1)AD是⊙O的切线 (2)BC=8
    【解答】解:(1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    即∠ACE+∠BCE=90°,
    ∵AD=AC,BE=BC,
    ∴∠ACE=∠D,∠BCE=∠BEC,
    又∵∠BEC=∠AED,
    ∴∠AED+∠D=90°,
    ∴∠DAE=90°,
    即AD⊥AE,
    ∵OA是半径,
    ∴AD是⊙O的切线;
    (2)由tan∠ACE==tan∠D可设AE=a,则AD=3a=AC,
    ∵OE=3,
    ∴OA=a+3,AB=2a+6,
    ∴BE=a+3+3=a+6=BC,
    在Rt△ABC中,由勾股定理得,
    AB2=BC2+AC2,
    即(2a+6)2=(a+6)2+(3a)2,
    解得a1=0(舍去),a2=2,
    ∴BC=a+6=8.

    24.(2021•梧州)如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.
    (1)求证:AC是⊙O的切线;
    (2)若OC=3,DE=2,求tan∠F的值.

    【答案】(1)略 (2)tanF=
    【解答】(1)证明:∵DF∥AC,
    ∴∠F=∠OAC,
    ∵∠OAB=∠F,
    ∴∠OAB=∠OAC,
    ∴OA是∠BAC的角平分线,
    ∵⊙O与AD相切于点B,
    ∴OB是⊙O的半径,OB⊥AD,
    ∵∠ACD=90°,
    ∴OC⊥AC,
    ∴OB=OC,
    ∴点C在⊙O上,
    ∵OC⊥AC,
    ∴AC是⊙O的切线;
    (2)解:由(1)知:OB=OC=3,OC是⊙O的半径,
    ∴CE是⊙O的直径,
    ∴CE=2OC=6,
    ∴CD=CE+DE=6+2=8,OD=OE+DE=OC+DE=3+2=5,
    在Rt△OBD中,由勾股定理得:BD===4,
    ∵∠OBD=∠ACD=90°,∠ODB=∠ADC,
    ∴△ODB∽△ADC,
    ∴=,
    ∴AC===6,
    ∵∠F=∠OAC,
    ∴tanF=tan∠OAC===.
    25.(2021•新疆)如图,AC是⊙O的直径,BC,BD是⊙O的弦,M为BC的中点,OM与BD交于点F,过点D作DE⊥BC,交BC的延长线于点E,且CD平分∠ACE.
    (1)求证:DE是⊙O的切线;
    (2)求证:∠CDE=∠DBE;
    (3)若DE=6,tan∠CDE=,求BF的长.

    【答案】(1)略 (2)略 (3) BF=
    【解答】(1)证明:连接OD,如图:

    ∵CD平分∠ACE,
    ∴∠OCD=∠DCE,
    ∵OC=OD,
    ∴∠OCD=∠ODC,
    ∴∠DCE=∠ODC,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴DE⊥OD,
    ∴DE是⊙O的切线;
    (2)证明:连接AB,如图:

    ∵AC是⊙O的直径,
    ∴∠ABC=90°,即∠ABD+∠DBC=90°,
    ∵=,
    ∴∠ABD=∠ACD,
    ∵∠ACD=∠ODC,
    ∴∠ABD=∠ODC,
    ∴∠ODC+∠DBC=90°,
    ∵∠ODC+∠CDE=90°,
    ∴∠CDE=∠DBC,即∠CDE=∠DBE;
    (3)解:Rt△CDE中,DE=6,tan∠CDE=,
    ∴=,
    ∴CE=4,
    由(2)知∠CDE=∠DBE,
    Rt△BDE中,DE=6,tan∠DBE=,
    ∴=,
    ∴BE=9,
    ∴BC=BE﹣CE=5,
    ∵M为BC的中点,
    ∴OM⊥BC,BM=BC=,
    Rt△BFM中,BM=,tan∠DBE=,
    ∴=,
    ∴FM=,
    ∴BF==.

    相关试卷

    第二十五讲 图形的对称、平移、旋转与位似-最新备战中考数学第一轮复习分点透练真题(全国通用):

    这是一份第二十五讲 图形的对称、平移、旋转与位似-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十五讲图形的对称平移旋转与位似解析版docx、第二十五讲图形的对称平移旋转与位似原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    第二十四讲 视图与投影-最新备战中考数学第一轮复习分点透练真题(全国通用):

    这是一份第二十四讲 视图与投影-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十四讲视图与投影解析版docx、第二十四讲视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    第二十三讲 尺规作图与无刻度直尺作图-最新备战中考数学第一轮复习分点透练真题(全国通用):

    这是一份第二十三讲 尺规作图与无刻度直尺作图-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十三讲尺规作图与无刻度直尺作图解析版docx、第二十三讲尺规作图与无刻度直尺作图原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map