2022-2023学年天津市蓟州中学高二上学期期中练习二数学试题(解析版)
展开2022-2023学年天津市蓟州中学高二上学期期中练习二数学试题
一、单选题
1.过点且倾斜角为的直线方程为( )
A. B.
C. D.
【答案】D
【分析】由倾斜角为求出直线的斜率,再利用点斜式可求出直线方程
【详解】解:因为直线的倾斜角为,所以直线的斜率为,
所以直线方程为,即,
故选:D
2.直线,当变动时,所有直线都通过定点( )
A. B. C. D.
【答案】A
【分析】将直线的一般式化成点斜式即可求解.
【详解】直线可以为,表示过点,斜率为的直线,
所以所有直线都通过定点为.
故选:A.
3.已知,则下列结论正确的是( )
A. B.
C. D.以上都不对
【答案】C
【解析】根据向量平行和垂直的坐标表示得出答案.
【详解】
故选:C
4.若图中的直线、、的斜率分别为、、则( )
A. B.
C. D.
【答案】A
【分析】由直线的倾斜角与斜率的变化关系可得选项.
【详解】由于直线的倾斜角为钝角,所以;
由于直线的倾斜角为锐角,且的倾斜角小于的倾斜角,所以,
所以.
故选:A.
【点睛】本题考查直线的倾斜角与斜率的关系,属于基础题.
5.已知正四面体ABCD,M为BC中点,N为AD中点,则直线BN与直线DM所成角的余弦值为( )
A. B. C. D.
【答案】B
【分析】利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可.
【详解】设该正面体的棱长为,因为M为BC中点,N为AD中点,
所以,
因为M为BC中点,N为AD中点,
所以有,
,
根据异面直线所成角的定义可知直线BN与直线DM所成角的余弦值为,
故选:B
6.若圆与圆外切,则( )
A. B. C. D.
【答案】C
【分析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.
【详解】由题意,圆与圆
可得,,
因为两圆相外切,可得,解得.
故选:C.
7.已知四棱锥,底面为平行四边形,M,N分别为棱BC,PD上的点,,,设,,,则向量用为基底表示为( )
A. B.
C. D.
【答案】D
【分析】由图形可得,根据比例关系可得,,再根据向量减法,代入整理并代换为基底向量.
【详解】
即
故选:D.
8.已知圆,,则这两圆的公共弦长为( )
A.4 B. C.2 D.1
【答案】C
【分析】先求出两圆的公共弦所在直线的方程,用垂径定理求弦长.
【详解】由题意知,,将两圆的方程相减,得,所以两圆的公共弦所在直线的方程为.
又因为圆的圆心为,半径,所以圆的圆心到直线的距离.所以这两圆的公共弦的弦长为.
故选:C.
9.已知动点P在正方体的对角线(不含端点)上.设,若为钝角,则实数的取值范围为( )
A. B. C. D.
【答案】C
【分析】建立空间直角坐标系,
【详解】由题设,建立如图所示的空间直角坐标系,用坐标法计算,利用不是平角,可得为钝角等价于,即,即可求出实数的取值范围.
设正方体的棱长为1,
则有
∴,∴设,
∴,
,
由图知不是平角,∴为钝角等价于,
∴,
∴,
解得
∴的取值范围是
故选:C.
二、填空题
10.已知直线l经过点P(0,1)且一个方向向量为(2,1),则直线l的方程为______.
【答案】
【分析】根据方向向量可得直线的斜率,进而根据点斜式求解方程即可.
【详解】因为直线l的一个方向向量为(2,1),所以其斜率为,所以直线l的方程为,即.
故答案为:
11.直线的方向向量是,平面的法向量,若直线,则___________.
【答案】1
【分析】结合已知条件可得,然后利用垂直向量的数量积为0即可求解.
【详解】由题意可知,,
因为,,
从而,解得.
故答案为:1.
12.已知直线和圆相交于两点.若,则的值为_________.
【答案】5
【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离,进而利用弦长公式,即可求得.
【详解】因为圆心到直线的距离,
由可得,解得.
故答案为:.
【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.
13.已知向量.若,则________.
【答案】.
【分析】利用向量的坐标运算法则求得向量的坐标,利用向量的数量积为零求得的值
【详解】,
,解得,
故答案为:.
【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量垂直的充分必要条件是其数量积.
14.已知直线l1与l2:x+y-1=0平行,且l1与l2的距离为,则l1的方程为________.
【答案】x+y+1=0或x+y-3=0
【分析】根据两直线平行时,直线方程的特点,结合平行线距离公式进行求解即可.
【详解】设l1的方程为x+y+C=0(C≠-1),由题意得=,得C=1或C=-3,故所求的直线方程为x+y+1=0或x+y-3=0.
故答案为:x+y+1=0或x+y-3=0
15.直线被圆O;截得的弦长最短,则实数m=___________.
【答案】1
【分析】求出直线MN过定点A(1,1),进而判断点A在圆内,当时,|MN|取最小值,利用两直线斜率之积为-1计算即可.
【详解】直线MN的方程可化为,
由,得,
所以直线MN过定点A(1,1),
因为,即点A在圆内.
当时,|MN|取最小值,
由,得,∴,
故答案为:1.
三、解答题
16.已知直线与直线.
(1)若,求m的值;
(2)若点在直线上,直线过点P,且在两坐标轴上的截距之和为0,求直线的方程.
【答案】(1),(2)或
【分析】(1)由题意可知,所以可得,从而可求出m的值;
(2)将点的坐标代入直线的方程中,求出m的值,从而可得点的坐标,然后设出直线方程,利用两坐标轴上的截距之和为0,列方程可求出直线方程
【详解】解:(1)因为,所以,且,
由,得,解得或(舍去)
所以,
(2)因为点在直线上,
所以,得,所以点的坐标为,
所以设直线的方程为(),
令,则,令,则,
因为直线在两坐标轴上的截距之和为0,
所以,解得或,
所以直线的方程为或
17.如图,四棱锥的底面是矩形,底面,,,M为的中点.
(1)求证:;
(2)求平面与平面所成的角的余弦值.
【答案】(1)证明见解析;(2).
【分析】(1)以点D为原点,依次以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,求出 ,利用数量积即可证明.
(2)求出两平面PAM与平面PDC的法向量,则法向量夹角余弦得二面角的余弦.
【详解】解:(1)依题意,棱DA,DC,DP两两互相垂直.
以点D为原点,依次以DA,DC,DP所在直线为x,y,z轴,
如图,建立空间直角坐标系.
则,,,.
可得,.
所以,
所以
(2)由(1)得到,,
因此可得,.
设平面的一个法向量为,则由
得
令,解得.
同理,可求平面PDC的一个法向量.
所以,平面PAM与平面PDC所成的锐二面角满足:
.
即平面PAM与平面PDC所成的锐二面角的余弦值为.
18.已知圆C过点,,且圆心在x轴上.
(1)求圆C的方程;
(2)设直线与圆C相交于A,B两点,若,求实数m的值.
【答案】(1)
(2)
【分析】(1)设圆C的半径为r,圆心,由距离公式得出圆C的方程;
(2)由得出直线l过圆心,从而得出的值.
【详解】(1)设圆C的半径为r,圆心,由题意得
解得
∴圆C的方程为.
(2)∵点M在圆上,且,
∴直线l过圆心,∴,解得.
19.已知圆C经过坐标原点O,圆心在x轴正半轴上,且与直线相切.
(1)求圆C的标准方程;
(2)直线与圆C交于A,B两点.
①求k的取值范围;
②证明:直线OA与直线OB的斜率之和为定值.
【答案】(1);(2)(ⅰ);(ⅱ)具体见解析.
【分析】(1)设出圆心,进而根据题意得到半径,然后根据圆与直线相切求出圆心,最后得到答案;
(2)(ⅰ)联立直线方程和圆的方程并化简,根据判别式大于零即可得到答案;
(ⅱ)设出两点坐标,进而通过根与系数的关系与坐标公式进行化简,即可得到答案.
【详解】(1)由题意,设圆心为,因为圆C过原点,所以半径r=a,
又圆C与直线相切,所以圆心C到直线的距离(负值舍去),所以圆 C的标准方程为:.
(2)(ⅰ)将直线l代入圆的方程可得:,因为有两个交点,
所以,即k的取值范围是.
(ⅱ)设,由根与系数的关系:,
所以.
即直线OA,OB斜率之和为定值.
20.如图,在三棱柱中,平面 ,,点分别在棱和棱 上,且为棱的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).
【分析】以为原点,分别以的方向为轴,轴,轴的正方向建立空间直角坐标系.
(Ⅰ)计算出向量和的坐标,得出,即可证明出;
(Ⅱ)可知平面的一个法向量为,计算出平面的一个法向量为,利用空间向量法计算出二面角的余弦值,利用同角三角函数的基本关系可求解结果;
(Ⅲ)利用空间向量法可求得直线与平面所成角的正弦值.
【详解】依题意,以为原点,分别以、、的方向为轴、轴、轴的正方向建立空间直角坐标系(如图),
可得、、、、
、、、、.
(Ⅰ)依题意,,,
从而,所以;
(Ⅱ)依题意,是平面的一个法向量,
,.
设为平面的法向量,
则,即,
不妨设,可得.
,
.
所以,二面角的正弦值为;
(Ⅲ)依题意,.
由(Ⅱ)知为平面的一个法向量,于是.
所以,直线与平面所成角的正弦值为.
【点睛】本题考查利用空间向量法证明线线垂直,求二面角和线面角的正弦值,考查推理能力与计算能力,属于中档题.
2023-2024学年天津市蓟州区第二中学高二上学期月考2数学试题含答案: 这是一份2023-2024学年天津市蓟州区第二中学高二上学期月考2数学试题含答案,共14页。试卷主要包含了单选题,填空题,问答题,证明题等内容,欢迎下载使用。
天津市蓟州区第一中学2023-2024学年高二上学期12月月考数学试题: 这是一份天津市蓟州区第一中学2023-2024学年高二上学期12月月考数学试题,共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
天津市蓟州区下营中学2023-2024学年高一上学期12月月考数学试题(解析版): 这是一份天津市蓟州区下营中学2023-2024学年高一上学期12月月考数学试题(解析版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。