终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题03 函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版).docx
    • 解析
      专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(解析版).docx
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)第1页
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)第2页
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)第3页
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(解析版)第1页
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(解析版)第2页
    专题03函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(解析版)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题03 函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)

    展开

    这是一份专题03 函数与面积定值最值问题【题型与技法】中考数学二轮复习金典专题讲练系列(通用版),文件包含专题03函数与面积定值最值问题题型与技法中考数学二轮复习金典专题讲练系列通用版解析版docx、专题03函数与面积定值最值问题题型与技法中考数学二轮复习金典专题讲练系列通用版原卷版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
    课前热身
    (2020•福建)已知直线交轴于点,交轴于点,二次函数的图象过,两点,交轴于另一点,,且对于该二次函数图象上的任意两点,,,,当时,总有.
    (1)求二次函数的表达式;
    (2)若直线,求证:当时,;
    (3)为线段上不与端点重合的点,直线过点且交直线于点,求与面积之和的最小值.
    解决动点产生的面积问题,常用到的知识和方法,如下:
    如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.
    如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.
    图1 图2 图3
    计算面积长用到的策略还有:
    如图4,同底等高三角形的面积相等.平行线间的距离处处相等.
    如图5,同底三角形的面积比等于高的比.
    如图6,同高三角形的面积比等于底的比.
    图4 图5 图6
    如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.
    (1)求该二次函数的解析式;
    (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
    (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.
    (四川成都·中考真题)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
    (1)求抛物线的函数表达式;
    (2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;
    (3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.
    (四川眉山·中考真题)如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
    (1)求抛物线的解析式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
    (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    (四川泸州·中考真题)如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.
    (1)求a的值和直线AB的解析式;
    (2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;
    (3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.
    (广东深圳·中考真题)已知顶点为A抛物线经过点,点.
    (1)求抛物线的解析式;
    (2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
    (四川锦阳·中考真题)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.
    (1)求抛物线和一次函数的解析式;
    (2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;
    (3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.
    (四川达州·中考真题)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).
    (1)求抛物线的解析式及其顶点C的坐标;
    (2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;
    (3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.
    (2020•达州中考)如图,在平面直角坐标系xOy中,已知直线y=12x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
    (1)求抛物线的解析式;
    (2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值.
    (2020•泰安中考)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=12时,求点P的坐标;
    ②求m的最大值.
    (2020•金昌中考)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
    (1)求此抛物线的表达式;
    (2)若PC∥AB,求点P的坐标;
    (3)连接AC,求△PAC面积的最大值及此时点P的坐标.
    (2020•黄冈中考)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.
    (1)求抛物线的解析式;
    (2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;
    (3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;
    (4)已知点H(0,458),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.
    (2020•郴州)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.
    (1)求抛物线和直线BC的表达式;
    (2)点P是抛物线上的一个动点.
    ①如图1,若点P在第一象限内,连接PA,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求S1S2的最大值;
    ②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.
    (2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC分别交AB和半圆O于E,D,连接OB,CD.
    (1)求证:BC是半圆O的切线;
    (2)试判断四边形OBCD的形状,并说明理由;
    (3)如图2,若抛物线经过点D且顶点为E.
    ①求此抛物线的解析式;
    ②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.
    (2020•黔南州)如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:
    (1)抛物线的解析式为 ,顶点坐标为 ;
    (2)判断点N是否在直线AC上,并说明理由;
    (3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.
    (2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..
    (1)求这个二次函数的表达式,并写出点E的坐标;
    (2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
    (3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.
    (2020•大庆)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).
    (1)求抛物线的函数表达式;
    (2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;
    (3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n的取值范围.(直接写出结果即可)

    相关试卷

    专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版):

    这是一份专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版),文件包含专题09“阿氏圆”模型解决几何最值问题-题型与技法中考数学二轮复习金典专题讲练系列通用版解析版docx、专题09“阿氏圆”模型解决几何最值问题-题型与技法中考数学二轮复习金典专题讲练系列通用版原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    专题03 函数-【题型与技法】中考数学二轮复习金典专题讲练系列(通用版 ):

    这是一份专题03 函数-【题型与技法】中考数学二轮复习金典专题讲练系列(通用版 ),文件包含专题03函数-题型与技法中考数学二轮复习金典专题讲练系列通用版解析版docx、专题03函数-题型与技法中考数学二轮复习金典专题讲练系列通用版原卷版docx等2份试卷配套教学资源,其中试卷共130页, 欢迎下载使用。

    专题03“瓜豆原理”模型解决动点路径问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版 ):

    这是一份专题03“瓜豆原理”模型解决动点路径问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版 ),文件包含专题03“瓜豆原理”模型解决动点路径问题解析版docx、专题03“瓜豆原理”模型解决动点路径问题原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map