![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)01](http://img-preview.51jiaoxi.com/2/3/13807022/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)02](http://img-preview.51jiaoxi.com/2/3/13807022/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)03](http://img-preview.51jiaoxi.com/2/3/13807022/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)01](http://img-preview.51jiaoxi.com/2/3/13807022/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)02](http://img-preview.51jiaoxi.com/2/3/13807022/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)03](http://img-preview.51jiaoxi.com/2/3/13807022/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 第10讲 二次函数与相似三角形存在性问题题型训练-【专题突破】2022-2023学年九年级数学上学期重难点及章节分类精品讲义(浙教版)(原卷版+解析) 试卷 3 次下载
- 第09讲 二次函数与特殊四边形存在性问题(难度较大)-【专题突破】2022-2023学年九年级数学上学期重难点及章节分类精品讲义(浙教版)(原卷版+解析) 试卷 2 次下载
- 第07讲 抛物线中等腰三角形的存在性问题专题探究-【专题突破】2022-2023学年九年级数学上学期重难点及章节分类精品讲义(浙教版)(原卷版+解析) 试卷 1 次下载
- 第06讲 应用二次函数求解几何最值专题探究-【专题突破】2022-2023学年九年级数学上学期重难点及章节分类精品讲义(浙教版)(原卷版+解析) 试卷 2 次下载
- 第05讲 二次函数的实际应用-【专题突破】2022-2023学年九年级数学上学期重难点及章节分类精品讲义(浙教版)(原卷版+解析) 试卷 2 次下载
第08讲 抛物线中直角三角形的存在性问题专题探究(原卷版+解析)
展开第8讲 抛物线中直角三角形的存在性问题专题探究
【知识点睛】
如有两定点,在其他特定的“线”上求第三点,形成直角三角形时:
解决策略:
如图,已知A(-3,0),B(-1,-6),在y轴上找点P,
使△ABP为直角三角形;分以下3种情况:
☆特地别:和等腰△存在性问题一样,直角三角形存在性也是需要分3类的,但是通常“一圆”的点是否存在,又存在几个,要根据实际情况来。
【类题训练】
1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.
(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.
提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
2.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.
(1)求该抛物线的解析式;
(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值;
(3)抛物线对称轴上是否存在点M,使△MAB是以AB为斜边的直角三角形,若存在,请直接写出点M的坐标;若不存在,并说明理由;
(4)在对称轴上是否存在点N,使△BCN为直角三角形,若存在,直接写出N点坐标,若不存在,说明理由.
3.如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).
(1)求抛物线的解析式;
(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;
(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
4.如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(﹣1,0),点B(4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).
(1)求抛物线的表达式;
(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;
(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移个单位,得到新抛物线y1,在y1的对称轴上确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.
5.如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.
(1)求抛物线的解析式;
(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE的最大值以及此时E点的坐标;
(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.
6.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
(1)求b,c,m的值;
(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.
【重难点讲义】浙教版数学九年级上册-第08讲 抛物线中直角三角形的存在性问题专题探究: 这是一份【重难点讲义】浙教版数学九年级上册-第08讲 抛物线中直角三角形的存在性问题专题探究,文件包含重难点讲义浙教版数学九年级上册-第08讲抛物线中直角三角形的存在性问题专题探究原卷版docx、重难点讲义浙教版数学九年级上册-第08讲抛物线中直角三角形的存在性问题专题探究解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
2023年中考复习存在性问题系列 特殊角的存在性问题专题探究: 这是一份2023年中考复习存在性问题系列 特殊角的存在性问题专题探究,共13页。
2023年中考复习存在性问题系列正方形存在性问题专题探究讲义: 这是一份2023年中考复习存在性问题系列正方形存在性问题专题探究讲义,共13页。试卷主要包含了 基本题型,解题思路,综合与探究等内容,欢迎下载使用。