湖北省武汉市一初慧泉中学2020-2021学年度八年级下学期周练15
展开湖北省武汉市一初慧泉中学2020-2021学年度八年级下学期周练15
一、选择题(每小题3分,共30分)
- 如果有意义,那么的取值范围是( ).
- >1 B.≥1 C.≤1 D.<1
2.下列长度的三条线段能组成直角三角形的是( ).
A.2,3,3 B.2,3,4 C.2,3,5 D.3,4,5
3.下列图象中,变量y不是变量的函数的是( ).
4.下列计算正确的是( ).
A. B. C. D.
5.矩形具有而菱形不一定具有的性质是( )
A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分
6.若b>0,则函数y=+b的图象可能是( ).
A B C D
7.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AE=5,BF=3,则BE的长是( )
A.5 B.4.5 C.4 D.3
8.顺次连接四边形ABCD的四边中点所得的四边形是正方形,则下列判断正确的是( ).
A.四边形ABCD一定是正方形 B.四边形ABCD一定是菱形
C.四边形ABCD一定是矩形 D.四边形ABCD的对角线一定互相垂直且相等
9.已知A、B、C是一次函数的图象上三点,则的大小关系为( ).
A. B. C. D.
10.如图,在面直角坐标系中,若直线与正方形ABCD有公共点,则不可能是( ).
A.3 B.2 C.1 D.
二、填空题(每小题3分,共18分)
11.
12.一次函数的图象与y轴的交点坐标是 .
13.E为平行四边形ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠C=52°,那么∠ABE=
14.若直线与直线的交点在轴上,则m=
15.如图,菱形ABCD的周长为8,高AE=,则对角线AC和BD长之比为
16.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式:的解集是
第13题图 第15题图 第16题图
三、解答题(共52分)
17.(本题10分)计算: (1) (2)
18.(本题10分)已知一次函数.
(1)在如图所示的平面直角坐标系中,画出函数的图象;
(2)直接写出图象与轴的交点A的坐标,与y轴交点B的坐标;
(3) 利用图象直接写出:当y<0时,的取值范围.
19.(本题10分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.
(1) 求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
- (本题10分)由每个边长为1的小正方形构成网格,每个小正方形的顶点叫做格点,仅用无刻度的直尺在给定的网格中作画图,画图过程用虚线表示,画图结果用实线表示,按要求完成下列问题:
(1)在图1中,画出点D关于CB的对称点F;
(2)在图2中,①直接写出△ACE的形状为 ;
②在CE上画点G,使BG=BE;
(3)在图3中,在△ACE中画点O,使点O到△ACE三个顶点的距离相等.
图1 图2 图3
21.(本题12分)如图1,直线交轴负半轴于B,交第一象限角平分线于点A.
(1) 求点A的坐标;
(2)若BC⊥交y轴负半轴于C,且AB=BC,求k的值;
(2) 如图2,若∠BAC=45°,点C在y轴负半轴上,则当∠BAC绕顶点A旋转过程中,求证:△BCO的面积始终为定值.
图1 图2
四、填空题(共16分)
22.已知关于的一次函数在-1≤≤5上的函数值总是正数,则m的取值范
围
23.甲、乙两车同时从A地出发匀速行驶到B地,甲车到达B地后停留1小时,然后返回A地;下图表示的是两车之间的距离y(千米)与乙车行驶的时间(小时)之间的函数关系:则下列结论:①甲车的速度是乙车的1.5倍;②A、B两地的距离为240千米;③图中a的值为42;④当乙车到达B地时,甲车离A地还有200千米;其中正确的结论是
- 如图,点E,F分别在正方形ABCD的边AD,BC上,且DE=BF,CH垂直于直线EF于H,连接BH,若AB=3,则线段BH长的最小值为
25.在平面直角坐标系中,垂直于轴的直线分别与函数和的图象相交于P,Q两点,若平移直线,可以使P,Q都在轴的下方,则实数a的取值范围是
五、解答题(共34分)
26.(本题10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑台,这100台电脑的销售总利润为y元.
①求y与的关系式;
②该商店购进A型、B型各多少台,才能使销售利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若店保持两种电脑的售价不变,请你联系以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。
27.(本题12分)四边形ABCD与四边形AEFG都为正方形,连接DG.
(1)如图1,当点E在BD上,点F在CD上时,连接CE.
①求证:CE=AE;②求证:∠CDG=135°;
(2)如图2,当点F不在CD上时,连接CF.求证:CF=.
图1 图2
28.(本题12分)如图1,直线经过定点P,交、y轴于A、B两点.
(1)如图1,直接写出定点P的坐标:
(2)如图2,当时,点C为y轴负半轴上一动点,过点P做PD⊥PC交轴于点D, M、N分别为CD、OA的中点,求值;
(3)如图3,E、F两点在射线OP上移动,EF=,点E向上移动2个单位得到点G,点E横坐标为t(t>0).在轴负半轴有点H(-2t,0),FG与HE相交于Q点.求证:点Q在某条直线上运动,并求此直线的解析式.
图1 图2
图3
湖北省武汉市一初慧泉中学2020-2021学年八年级上册第数学周测4: 这是一份湖北省武汉市一初慧泉中学2020-2021学年八年级上册第数学周测4,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省武汉市一初慧泉中学2022~2023学年度上学期八年级数学周练五: 这是一份湖北省武汉市一初慧泉中学2022~2023学年度上学期八年级数学周练五,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省武汉市一初慧泉中学2020-2021学年度八年级下学期周练14: 这是一份湖北省武汉市一初慧泉中学2020-2021学年度八年级下学期周练14,共11页。试卷主要包含了一次函数的图象大致是,下列说法,若函数是正比例函数,则m=等内容,欢迎下载使用。