黑龙江省哈尔滨市第六十九中学校2022-2023学年九年级上学期基础过关检测卷数学试卷(含答案)
展开哈尔滨市第六十九中学校毕业年级基础过关检测卷
数学试卷
一、选择题(每小题3分,共计30分)
1.二次函数,下列说法错误的是( ).
A.; B.二次项为;
C.一次项系数为; D.常数项为.
2.下列各点不在二次函数的图像的是( ).
A.(0,1); B.(1,0); C.(-1,0); D.(1,4)
3.下列汽车标志中,可以看作是中心对称图形的是( ).
A. B.
C. D.
4.某种商品的价格是2元,准备进行两次降价。如果每次降价的百分率都是,经过两次降价后的价格(单位:元)随每次降价的百分率的变化而变化,与之间的关系为( ).
A. B. C. D.
5.二次函数的图象与轴的交点个数是( ).
A.1个 B.2个 C.1个或者2个 D.0个
6.如图,D是的中点,与相等的角有( ).
A.4个 B.3个 C.2个 D.1个
7.已知点、、在函数上,则、、的大小关系是( ).
A. B. C. D.
8.抛物线是抛物线向( )平移位得到的.
A.下平移3单位; B.上平移3单位;
C.下平移单位; D.上平移单位;
9.如图,A、B、C在上,,,则等于( )
A.30° B.40° C.70° D.60°
10.下列各图是在同一直角坐标系内,二次函数与一次函数的大致图象,有且只有一个正确的,正确的是( )
A. B.
C. D.
二、填空题(每小题3分,共计30分)
11.函数的顶点坐标是___________.
12.二次函数的图像的对称轴为___________.
13.如图,AB是半圆的直径,点C在上,若,则___________.
14.如图,AB是的直径,C、D、E是上的点,则的度数为____________.
15.如图,内接于,,,则___________cm.
16.若二次函数的图象经过原点,则m的值必为____________.
17.如果弧长为的扇形面积为,那么该扇形的半径为___________.
18.如图,AB是的直径,AC是的切线,连接交于点D,连接BD,.则的度数是____________度.
19.在圆中两条平行弦的长分别6和8,若圆的半径为5,则两条平行弦间的距离为___________.
20.如图,内接于,AD为直径,CD为的切线,连接BC,若,,,则_____________.
三、解答题(其中21-22题各7分,23-24题各8分,25题10分,共40分)
21.抛物线经过,两点,求抛物线的解析式.
22.如图,圆O的直径AB垂直于弦CD,垂足是E,,,求CD的长.
23.如图,在中,弦AC和BD相交了点E,点F为BC中点,,求证:.
24.如图,抛物线与x轴交于点A、点B,与y轴交于点C,A点坐标为,连接AC,若.
(1)求抛物线的解析式;
(2)点P为第一象限抛物线上一点,连接AP、BP,设点P的横坐标为t,的面积为S,求S与t的函数解析式:
25.如图,内接于,点D在AC上,射线AO交BD于点E,.
(1)求证:;
(2)当时,求证:;
(3)在(2)的条件下,延长BD交于点F,连接AF,若,,求的半径.
答案
一、选择题
1-5CBACD 6-10BBACD
二、填空题.
11.(0,-3) 12.直线 13.40 14.90
15. 16.3 17.8 18.25 19.1或720、6
三、解答题
21.原式
22.
23.略
24.(1)
(2)
25.解:(1)延长AO交于点H,连接CH,,,所以,,所以;(2)延长AO交BC于点Q,,所以,所以AQ垂直平分BC,所以;
(3)延长AO交BC于H,交于T,连接BT,设导角得,,,
易证,,设,则,,,勾股,,,,,,所以的半径为.
黑龙江省 哈尔滨市第六十九中学校2023-2024学年九年级上学期月考数学试题: 这是一份黑龙江省 哈尔滨市第六十九中学校2023-2024学年九年级上学期月考数学试题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省哈尔滨市第三十九中学校2022—-2023学年上学期九年级期中考试数学卷: 这是一份黑龙江省哈尔滨市第三十九中学校2022—-2023学年上学期九年级期中考试数学卷,共8页。
2023年黑龙江省哈尔滨市第六十九中学中考模拟九年级数学试卷: 这是一份2023年黑龙江省哈尔滨市第六十九中学中考模拟九年级数学试卷,共6页。