【高考真题解密】高考数学真题题源——专题02《概率与排列组合》母题解密(新高考卷)
展开
这是一份【高考真题解密】高考数学真题题源——专题02《概率与排列组合》母题解密(新高考卷),文件包含高考真题解密高考数学真题题源专题02《概率与排列组合》母题解密新高考卷解析版docx、高考真题解密高考数学真题题源专题02《概率与排列组合》母题解密新高考卷原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
专题02 概率与排列组合【母题来源】2022年新高考I卷【母题题文】从至的个整数中随机取个不同的数,则这个数互质的概率为 A. B. C. D. 【母题来源】2022年新高考II卷【母题题文】甲乙丙丁戊名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有A. 种 B. 种 C. 种 D. 种 【命题意图】第1题考察计数原理,考察排列组合的应用,考察古典概型的计算,考察应用排列组合计算古典概型问题的概率。第2题考察排列组合的捆绑法、插空法等计算方法。试题通过设计优化情境,应用型、创新性的考察。【命题方向】排列组合与概率是高考必考的知识点之一,其中概率是相对容易排列组合则时难时易。主要考察分类、分布计算原理的应用,考察古典概型及几何概型,突出考察分类讨论思想,考察转化化归数学思想应用,试题在问题情境的设置上越来越接近生活,把实际问题合理、正确的转化为排列组合概率问题,以此来考察思想、应用、创新等能力。排列、组合与概率常以现实生活、社会热点为载体 【得分要点】涉及到排列组合的综合问题,处理此类问题一般先分析如何安排,在安排时是分类还是分步,元素之间是否讲顺序,以及分组问题注意重复情况的处理,对各种情况一定要仔细斟酌题意,写全切不要重复 1.古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目. 2.古典概率中的“人坐座位模型基础”:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。主要典型题:1.捆绑法;2.插空法;3.染色。出现两个实践重叠,必要时候,可以使用容斥原理来等价处理:容斥原理 3.古典概型中的“球放盒子模型基础”:(1)球是否不相同(2)盒子是否不同(盒子相同题型很少)(3)球是否有剩余,盒子是否有空的 4.古典概型中的“球放盒子模型”思维:盒子和球限制(1)球和盒子是否定序(标号)(2)盒子是否定量(容纳数量) 5.古典概型中的“球放盒子模型”技巧:(1)无限制,指数幂形式:(2)有限制:(i)先分组再排列(ii)复杂形式:树图(iii)球相同:挡板法。 6.题型应用情境模型:直白型:球放盒子对象型:可类比如下常见的几种医护分配(各种值岗或志愿者进社区)旅游景点运动项目(社团)报名邮箱投信(卡片) 1.(2022·广东·模拟预测)街头篮球比赛后,红、黄两队共名队员(红队人,黄队人)合照,要求人站成一排,红队人中有且只有名队员相邻,则不同排队的方法共有( )A.种 B.种 C.种 D.种 2.(2022·广东汕头·三模)2022年北京冬季奥运会期间,从3名男志愿者和2名女志愿者中选4名去支援“冰壶”“花样滑冰”“短道速滑”三项比赛志愿者工作,其中冰壶项目需要一男一女两名,花样滑冰和短道速滑各需要一名,男女不限.则不同的支援方法的种数是( )A.36 B.24 C.18 D.42 3.(2022·广东·二模)某校安排高一年级(1)~(5)班共5个班去A,B,C,D四个劳动教育基地进行社会实践,每个班去一个基地,每个基地至少安排一个班,则高一(1)班被安排到A基地的排法总数为( )A.24 B.36 C.60 D.240 4.(2022·江苏南通·模拟预测)某国家级示范高职院校为做好春季高考招生工作,决定邀请省内部分高中优秀高三学生到校进行职业生涯体验.若育才高中将获得的6个体验名额随机分配给高三年级4个班级,则每个班均获得体验名额的概率为( )A. B. C. D. 5.(2022·江苏省赣榆高级中学模拟预测)某校为落实“双减”政策;在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为( )A. B. C. D. 6.(2021·江苏镇江·模拟预测)清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共有10人进入决赛,其中高一年级3人,高二年级3人,高三年级4人,现采用抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级3人不相邻的概率为( )A. B. C. D. 7.(2022·湖南·雅礼中学模拟)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( )A. B. C. D. 8.(2022·重庆市育才中学模拟预测)有4名大学生志愿者参加2022年北京冬奥会志愿服务.冬奥会志愿者指挥部随机派这4名志愿者参加冰壶、短道速滑、花样滑冰3个项目比赛的志愿服务,则每个项目至少安排一名志愿者进行志愿服务的概率( )A. B. C. D. 9.(2022·重庆·模拟)为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着,,三个农业扶贫项目进驻某村,对仅有的四个贫困户甲、乙、丙、丁进行产业帮扶,若每个贫困户只能选择一个扶贫项目,每个项目至少有一户选择,则甲乙两户选择同一个扶贫项目的概率为( )A. B. C. D. 10.(2022·福建三明·模拟预测)某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为( )A. B. C. D. 11.(2022·福建·4月福建高三毕业班百校联科测试)共有5名同学参加演讲比赛,在安排出场顺序时,甲、乙排在一起,且丙与甲、乙都不相邻的概率为( )A. B. C. D. 12.(2022·福建泉州模拟)某密码锁共设四个数位,每个数位的数字都可以是1,2,3,4中的任一个.现密码破译者得知:甲所设的四个数字有且仅有三个相同;乙所设的四个数字有两个相同,另两个也相同;丙所设的四个数字有且仅有两个相同;丁所设的四个数字互不相同.则上述四人所设密码最安全的是( ).A.甲 B.乙 C.丙 D.丁 13.(2022·山东·青岛模拟)某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A. B. C. D. 14.(2022·山东·百师联盟预测)为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为( )A. B. C. D. 15.(2022·黑龙江嫩江五校模拟预测)某学校举办冰雪知识竞赛,甲、乙两人分别从速度滑冰,花样滑冰,冰球滑冰,钢架雪车,跳台滑雪,冰壶等六个门类中各选三类作答,则甲、乙两人所选的类型中恰有两类相同的选法有( )种A.180 B.225 C.200 D.400 16.(2022·辽宁东北育才学校最后一卷)2021年是巩固脱贫攻坚成果的重要一年,某县为响应国家政策,选派了6名工作人员到、、三个村调研脱贫后的产业规划,每个村至少去1人,不同的安排方式共有A.630种 B.600种 C.540种 D.480种
相关试卷
这是一份【高考真题解密】高考数学真题题源——专题16《数学实际应用题》母题解密(新高考卷),文件包含高考真题解密高考数学真题题源专题16《数学实际应用题》母题解密新高考卷解析版docx、高考真题解密高考数学真题题源专题16《数学实际应用题》母题解密新高考卷原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份【高考真题解密】高考数学真题题源——专题15《导数综合》母题解密(新高考卷),文件包含高考真题解密高考数学真题题源专题15《导数综合》母题解密新高考卷解析版docx、高考真题解密高考数学真题题源专题15《导数综合》母题解密新高考卷原创版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份【高考真题解密】高考数学真题题源——专题14《统计》母题解密(新高考卷),文件包含高考真题解密高考数学真题题源专题14《统计》母题解密新高考卷解析版docx、高考真题解密高考数学真题题源专题14《统计》母题解密新高考卷原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。