![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件01](http://img-preview.51jiaoxi.com/1/3/13750990/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件02](http://img-preview.51jiaoxi.com/1/3/13750990/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件03](http://img-preview.51jiaoxi.com/1/3/13750990/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件04](http://img-preview.51jiaoxi.com/1/3/13750990/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件05](http://img-preview.51jiaoxi.com/1/3/13750990/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件06](http://img-preview.51jiaoxi.com/1/3/13750990/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件07](http://img-preview.51jiaoxi.com/1/3/13750990/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件08](http://img-preview.51jiaoxi.com/1/3/13750990/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
五年级上册数学课件-典型应用题 鸽巢问题 专项学习课件
展开把四根小棒放进三个纸杯中有几种放法?
不管怎么放,至少有2根小棒要放进同一个纸杯里.
把4枝笔放进3个盒子中。
看看有几种放法?通过摆放,你发现了什么?
不管怎么放,总有一个盒子里至少放进2枝笔.
不管怎么放,总有一个盒子里至少放进2枝铅笔.
你能用更直接的方法,只摆一种情况,就能得到这个结论吗?通过这样摆放你有什么发现?
总有一个笔筒里至少放进2枝铅笔
把4枝铅笔放进3个笔筒里
如果每个笔筒里放1枝铅笔, 剩下的( )枝铅笔 所以,总有一个笔筒里至少放( )枝铅笔。
还要放进其中一个笔筒里,
把5枝笔放进4个盒子中。
把5枝铅笔放在4个文具盒里,还是不管怎么放,总有一个文具盒里至少放进了2枝铅笔吗?
这样分实际上是怎样在分?怎样列式?
把6枝铅笔放在4个文具盒里,会有什么结果呢?
把5个苹果放进4个抽屉里,不管怎么放总有一个抽屉里至少有( )苹果。
5可以分成(5、0、0、 0)、(4、1、0、0)、(3、2、0、0)、( 3、1、1、0) (2、2、1、0)、(2、1、1、1)
有5个苹果,要放入4个抽屉中,那么总有一个抽屉里面至少会放2个苹 果。
5÷4=1(个)……1(个)
1、如果把6个苹果放入5个抽屉中,至少有几个放到同一个抽屉里?
2、如果把7个苹果放入6个抽屉中,至少有几个放到同一个抽屉里呢?
3、如果把100个苹果放入99个抽屉中,至少有几个放到同一个抽屉里呢?
1、如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?
2、如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?
只要物体数量是抽屉数量的1倍多,总有一个抽屉里 放进2个的物体。
1、如果把9个苹果放入4个抽屉中,总有一个抽屉里至少放了( )个苹果。
2、如果把14个苹果放入4个抽屉中,总有一个抽屉里至少放了( )个苹果。
9÷4=2(个)……1(个)
14÷4=3(个)……2(个)
物体数÷抽屉数=商……余数
如果物体数除以抽屉数有余数,用所得的商加1,就会发现“总有一个抽屉里至少有商加1个物体”。
整除时 至少数=商数
数学小知识:鸽巢问题的由来。抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。抽屉原理有两个经典案例,一个是把10个苹果放进9个抽屉里,总有一个抽屉至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
1、六年级共有140人,至少有( )人在同一月生日。
2、有25个玩具,放在4个箱子里,有一个箱子里至少有( )个玩具。
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
如果每个鸽舍里飞进一只鸽子,最多飞进5只鸽子,
7只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里。
剩下的2只鸽子飞进其中的一个鸽舍里或分别飞进两个鸽舍里,
所以,至少有2只鸽子要飞进同一个鸽舍里。
做一做:8只鸽子飞回3个鸽舍,至少有( )只鸽子要飞进同一个鸽舍。为什么?
我们先让一个鸽舍里飞进2只鸽子,3个鸽舍最多可飞进6只鸽子,还剩下2只鸽子,无论怎么飞,所以至少有3只鸽子要飞进同一个笼子里。
我校六年级男生有30人,至少有( )名男生的生日是在同一个月。
30÷12 = 2……6 2+1 = 3(名)
(1)三个小朋友同行,其中必有 两个小朋友性别相同。
(2) 从电影院中任意找来13个观众, 至少有两个人属相相同。
1、把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。这是为什么?
2、把7本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?
3、把9本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?
在有些问题中,“抽屉”和“苹果”不是很明显, 需要我们制造出“抽屉”和“苹果”. 制造出“抽屉”和“苹果”是比较困难的,这一方面需要同学们去分析题目中的条件和问题,另一方面需要多做一些题来积累经验.
1、19朵花插入4个花瓶里,至少有一个花瓶里要插入5朵或5朵以上的鲜花。为什么?2、小林参加飞镖比赛,投出8镖,成绩是65环。小林至少有一镖不低于9环,为什么?
19÷4=如果每个花瓶插4朵,余三朵,至少有一个花瓶插5朵或5朵以上
如果没有一标是9环及以上,总分最多64分,肯定一镖是9环及以上
3、某小学今年入学的一年级新生中有121名学生,这些新生中至少有11人是同一个月出生的。为什么?4、麻湖小学六年级学生有31人是9月份出生的,至少有多少人出生在同一天?5、六年级共有男生55人,至少有2名男生在同一个星期过生日,为什么?
1、把一些铅笔放进3个文具盒中,保证其中一个文具盒至少有4枝铅笔,原来至少有多少枝铅笔?2、把我们班至少有10人在同一个月里生日,请问我们班至少有多少人?
小学数学人教版六年级下册5 数学广角 (鸽巢问题)课堂教学ppt课件: 这是一份小学数学人教版六年级下册5 数学广角 (鸽巢问题)课堂教学ppt课件,共33页。PPT课件主要包含了第3课时练习十三,+1=4个,m+1,易错训练P48等内容,欢迎下载使用。
小学数学人教版六年级下册5 数学广角 (鸽巢问题)教课内容课件ppt: 这是一份小学数学人教版六年级下册5 数学广角 (鸽巢问题)教课内容课件ppt,共21页。PPT课件主要包含了抢凳子游戏,你发现什么,你知道吗,解决问题,1﹢1=2只,试一试吧,为什么,猜猜看等内容,欢迎下载使用。
小学数学人教版六年级下册5 数学广角 (鸽巢问题)图片课件ppt: 这是一份小学数学人教版六年级下册5 数学广角 (鸽巢问题)图片课件ppt,共17页。PPT课件主要包含了猜牌游戏,一定有,支或2支以上,放笔实验,至少放进2支,至少数,÷611,巩固练习,÷1211,÷322等内容,欢迎下载使用。
![数学口算宝](http://img.51jiaoxi.com/images/b5b1d1ecde54d50c4354a439d5c45ddc.png)