云南省西双版纳景洪市重点中学2022年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列方程中,两根之和为2的是( )
A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
2.已知直线与直线的交点在第一象限,则的取值范围是( )
A. B. C. D.
3.下列运算正确的是( )
A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
4.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )
A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
5.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
A. B.
C. D.
6.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
7.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )
A.3 个 B.4 个 C.7 个 D.8 个
8.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
9.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是( )
A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB
10.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
12.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
14.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC:AC=1:2,则AB的长为_____.
15.如图,直线经过、两点,则不等式的解集为_______.
16.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m __________ n.(填“>”,“=”或“<”)
三、解答题(共8题,共72分)
17.(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
18.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
19.(8分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
20.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
21.(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
22.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
23.(12分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
24.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:
请根据图中信息,解答下列问题:
(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.
(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.
【详解】
在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
故选B.
【点睛】
本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
2、C
【解析】
根据题意画出图形,利用数形结合,即可得出答案.
【详解】
根据题意,画出图形,如图:
当时,两条直线无交点;
当时,两条直线的交点在第一象限.
故选:C.
【点睛】
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
3、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
4、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
180000=1.8×105,
故选A.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
考点:由实际问题抽象出分式方程.
6、A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
7、D
【解析】
试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
解:使△ABC是等腰三角形,
当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
所以共8个.
故选D.
点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
8、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
9、B
【解析】
作弧后可知MN⊥CB,且CD=DB.
【详解】
由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.
【点睛】
了解中垂线的作图规则是解题的关键.
10、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、8
【解析】
试题分析:设红球有x个,根据概率公式可得,解得:x=8.
考点:概率.
12、2或2.
【解析】
本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
【详解】
解:
当点在线段的延长线上时,如图3所示.
过点作于,
是正方形的对角线,
,
,
在中,由勾股定理,得:
,
在和中,,
,
,
当点在线段上时,如图4所示.
过作于.
是正方形的对角线,
,
在中,由勾股定理,得:
在和中,,
,
,
故答案为或.
【点睛】
本题主要考查了勾股定理和三角形全等的证明.
13、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
14、1
【解析】
PC切⊙O于点C,则∠PCB=∠A,∠P=∠P,
∴△PCB∽△PAC,
∴,
∵BP=PC=3,
∴PC2=PB•PA,即36=3•PA,
∵PA=12
∴AB=12-3=1.
故答案是:1.
15、-1<X<2
【解析】
经过点A,
∴不等式x>kx+b>-2的解集为.
16、>
【解析】
由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知 ,利用锐角三角函数 ,即可判断出
【详解】
由题意可知:找到特殊点,如图所示:
设点到射线的距离 ,点到射线的距离
由图可知,
,
,
【点睛】
本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.
三、解答题(共8题,共72分)
17、
【解析】
过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
【详解】
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD•tan∠BPD=PD•tan26.6°.
在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
∴CD=PD•tan∠CPD=PD•tan37°.
∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
∴0.75PD﹣0.50PD=1,解得PD=2.
∴BD=PD•tan26.6°≈2×0.50=3.
∵OB=220,∴PE=OD=OB﹣BD=4.
∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
∴.
18、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
19、证明见解析;.
【解析】
根据两组对边分别平行的四边形是平行四边形即可证明;
只要求出CD即可解决问题.
【详解】
证明:、E分别是AB、AC的中点
,
又
四边形CDEF为平行四边形
.
,
,
又为AB中点
,
在中,
,
,
四边形CDEF是平行四边形,
.
【点睛】
本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
20、解:(1)22.1.
(2)设需要售出x部汽车,
由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=2.
当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
解这个方程,得x1=-24(不合题意,舍去),x2=3.
∵3<10,∴x2=3舍去.
答:要卖出2部汽车.
【解析】
一元二次方程的应用.
(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
21、(1)60;(2)20,20;(3)38000
【解析】
(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;
(2)先确定各组的人数,然后根据中位数和众数的定义求解;
(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.
【详解】
(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);
(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.
∵20出现次数最多,∴众数为20元;
∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;
(3)2000=38000(元),∴估算全校学生共捐款38000元.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.
22、 (1) 方案1; B(5,0); ;(2) 3.2m.
【解析】
试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.
(2)把x=3代入抛物线的解析式,即可得到结论.
试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;
(2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.
方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.
由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;
(2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.
方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0).
设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,
∴抛物线的解析式为:;
(2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.
23、(1)10米;(2)11.4米
【解析】
(1)延长DC交AN于H.只要证明BC=CD即可;
(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
【详解】
(1)如图,延长DC交AN于H,
∵∠DBH=60°,∠DHB=90°,
∴∠BDH=30°,
∵∠CBH=30°,
∴∠CBD=∠BDC=30°,
∴BC=CD=10(米);
(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
∴DH=15,
在Rt△ADH中,AH=≈=20,
∴AB=AH﹣BH=20﹣8.65=11.4(米).
【点睛】
本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
24、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116016年社会消费品零售总额为115 15167×(115+15.116%)亿元.
【解析】
试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;
(116)根据平均数的定义,求解即可;
(15)根据增长率的中位数,可得116016年的销售额.
试题解析:解:(115)数据从小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,
则嘉兴市1160115~116015年社会消费品零售总额增速这组数据的中位数是15.116%;
(116)嘉兴市近三年(1160116~116015年)的社会消费品零售总额这组数据的平均数是:
(6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(亿元);
(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150×(115+15.116%)=16158.116716(亿元).
考点:115.折线统计图;116.条形统计图;15.算术平均数;16.中位数..
云南省西双版纳景洪市重点中学2022年中考数学仿真试卷含解析: 这是一份云南省西双版纳景洪市重点中学2022年中考数学仿真试卷含解析,共19页。试卷主要包含了下列各式中计算正确的是,计算的结果等于等内容,欢迎下载使用。
2022年德宏市重点中学中考押题数学预测卷含解析: 这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
云南省西双版纳景洪市重点中学2021-2022学年中考数学考前最后一卷含解析: 这是一份云南省西双版纳景洪市重点中学2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。