2020-2022年江苏中考数学3年真题汇编 专题15 三角形解答题(学生卷+教师卷)
展开专题15 三角形解答题1.(2022·江苏盐城·中考真题)证明:垂直于弦的直径平分弦以及弦所对的两条弧.2.(2022·江苏盐城·中考真题)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,是垂直于工作台的移动基座,、为机械臂,m,m,m,.机械臂端点到工作台的距离m.(1)求、两点之间的距离;(2)求长.(结果精确到0.1m,参考数据:,,,)3.(2022·江苏盐城·中考真题)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在中,,四边形、和分别是以的三边为一边的正方形.延长和,交于点,连接并延长交于点,交于点,延长交于点.(1)证明:;(2)证明:正方形的面积等于四边形的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形和分别是以的两边为一边的平行四边形,探索在下方是否存在平行四边形,使得该平行四边形的面积等于平行四边形、的面积之和.若存在,作出满足条件的平行四边形(保留适当的作图痕迹);若不存在,请说明理由.4.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中, ,所以.所以∠=∠.因为∠ ∠ =∠ =90°,所以∠ +∠ =90°,所以∠ =90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.5.(2022·江苏常州·中考真题)如图,点在射线上,.如果绕点按逆时针方向旋转到,那么点的位置可以用表示.(1)按上述表示方法,若,,则点的位置可以表示为______;(2)在(1)的条件下,已知点的位置用表示,连接、.求证:.6.(2022·江苏常州·中考真题)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;(3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.7.(2022·江苏泰州·中考真题)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5. 点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒(1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当 AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若∠GOH为直角,求此时t的值.8.(2022·江苏无锡·中考真题)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)9.(2022·江苏无锡·中考真题)如图,已知四边形ABCD为矩形,,点E在BC上,,将△ABC沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.10.(2022·江苏无锡·中考真题)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF.求证:(1)△DOF≌△BOE;(2)DE=BF.11.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.12.(2022·江苏扬州·中考真题)如图,为的弦,交于点,交过点的直线于点,且.(1)试判断直线与的位置关系,并说明理由;(2)若,求的长.13.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.(1)求证:;(2)过点作,垂足为.若的周长为56,,求的面积.14.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.15.(2022·江苏苏州·中考真题)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.(1)求证:;(2)若,求的度数.16.(2022·江苏扬州·中考真题)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)17.(2022·江苏连云港·中考真题)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.(1)如图2,当点落在边上时,延长交于点,求的长.(2)若点、、在同一条直线上,求点到直线的距离.(3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.18.(2021·江苏镇江·中考真题)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:;(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.19.(2021·江苏淮安·中考真题)【知识再现】学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL定理)”是判定直角三角形全等的特有方法.【简单应用】如图(1),在△ABC中,∠BAC=90°,AB=AC,点D、E分别在边AC、AB上.若CE=BD,则线段AE和线段AD的数量关系是 .【拓展延伸】在△ABC中,∠BAC=(90°<<180°),AB=AC=m,点D在边AC上.(1)若点E在边AB上,且CE=BD,如图(2)所示,则线段AE与线段AD相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E在BA的延长线上,且CE=BD.试探究线段AE与线段AD的数量关系(用含有a、m的式子表示),并说明理由.20.(2021·江苏镇江·中考真题)如图,点和点是反比例函数图象上的两点,点在反比例函数的图象上,分别过点,作轴的垂线,垂足分别为点,,,连接交轴于点.(1)k= ;(2)设点A的横坐标为a,点F的纵坐标为m,求证:;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标: .21.(2021·江苏南通·中考真题)如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.22.(2021·江苏泰州·中考真题)(1)如图①,O为AB的中点,直线l1、l2分别经过点O、B,且l1∥l2,以点O为圆心,OA长为半径画弧交直线l2于点C,连接AC.求证:直线l1垂直平分AC;(2)如图②,平面内直线l1∥l2∥l3∥l4,且相邻两直线间距离相等,点P、Q分别在直线l1、l4上,连接PQ.用圆规和无刻度的直尺在直线l4上求作一点D,使线段PD最短.(两种工具分别只限使用一次,并保留作图痕迹)23.(2021·江苏徐州·中考真题)如图1,正方形的边长为4,点在边上(不与重合),连接.将线段绕点顺时针旋转90°得到,将线段绕点逆时针旋转90°得到.连接.(1)求证:①的面积;②;(2)如图2,的延长线交于点,取的中点,连接,求的取值范围.24.(2021·江苏徐州·中考真题)如图,将一张长方形纸片沿折叠,使两点重合.点落在点处.已知,.(1)求证:是等腰三角形;(2)求线段的长.25.(2021·江苏徐州·中考真题)如图,为的直径,点在上,与交于点,,连接.求证:(1);(2)四边形是菱形.26.(2021·江苏常州·中考真题)如图,B、F、C、E是直线l上的四点,.(1)求证:;(2)将沿直线l翻折得到.①用直尺和圆规在图中作出(保留作图痕迹,不要求写作法);②连接,则直线与l的位置关系是__________.27.(2021·江苏无锡·中考真题)如图,已知锐角中,.(1)请在图1中用无刻度的直尺和圆规作图:作的平分线;作的外接圆;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,的半径为5,则________.(如需画草图,请使用图2)28.(2021·江苏南京·中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设的长为a,点B在母线上,.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.29.(2021·江苏无锡·中考真题)已知:如图,,相交于点O,,.求证:(1);(2).30.(2021·江苏盐城·中考真题)如图,点是数轴上表示实数的点.(1)用直尺和圆规在数轴上作出表示实数的的点;(保留作图痕迹,不写作法)(2)利用数轴比较和的大小,并说明理由.31.(2021·江苏连云港·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A离岸边,即.海面与地面平行且相距,即.(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线与海面垂直,鱼竿与地面的夹角.求点O到岸边的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,点O恰好位于海面.求点O到岸边的距离.(参考数据:,,,,,)32.(2021·江苏南京·中考真题)如图,已知P是外一点.用两种不同的方法过点P作的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.33.(2021·江苏南京·中考真题)如图,与交于点O,,E为延长线上一点,过点E作,交的延长线于点F.(1)求证;(2)若,求的长.34.(2021·江苏连云港·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;(2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.35.(2020·江苏南京·中考真题)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE36.(2020·江苏镇江·中考真题)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.37.(2020·江苏镇江·中考真题)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.38.(2020·江苏宿迁·中考真题)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.39.(2020·江苏宿迁·中考真题)【感知】(1)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】(2)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】(3)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.40.(2020·江苏南通·中考真题)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.41.(2020·江苏南通·中考真题)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.42.(2020·江苏南通·中考真题)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.43.(2020·江苏盐城·中考真题)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中长为厘米,长为厘米,阴影部分是边长为厘米的正方形雕刻模具,刻刀的位置在模具的中心点处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图,对于中的木门,当模具换成边长为厘米的等边三角形时,刻刀的位置仍在模具的中心点处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图中画出雕刻所得图案的草图,并求其周长.44.(2020·江苏徐州·中考真题)如图,,,.,与交于点.(1)求证:;(2)求的度数.45.(2020·江苏徐州·中考真题)我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.(1)在图①中,若,则的长为_____;(2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;(3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.46.(2020·江苏常州·中考真题)已知:如图,点A、B、C、D在一条直线上,.(1)求证:;(2)若,求的度数.47.(2020·江苏盐城·中考真题)如图,是的外接圆,是的直径,.(1)求证:是的切线;(2)若,垂足为交于点F;求证:是等腰三角形.48.(2020·江苏盐城·中考真题)如图,点是正方形,的中心.(1)用直尺和圆规在正方形内部作一点(异于点),使得(保留作图痕迹,不写作法)(2)连接求证:.49.(2020·江苏淮安·中考真题)【初步尝试】(1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则与的数量关系为 ;【思考说理】(2)如图②,在三角形纸片中,,,将折叠,使点与点重合,折痕为,求的值.【拓展延伸】(3)如图③,在三角形纸片中,,,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为.①求线段的长;②若点是边的中点,点为线段上的一个动点,将沿折叠得到,点的对应点为点,与交于点,求的取值范围.50.(2020·江苏淮安·中考真题)如图,三条笔直公路两两相交,交点分别为、、,测得,,千米,求、两点间的距离.(参考数据:,,结果精确到1千米).51.(2020·江苏常州·中考真题)如图1,点B在线段上,Rt△≌Rt△,,,. (1)点F到直线的距离是_________;(2)固定△,将△绕点C按顺时针方向旋转30°,使得与重合,并停止旋转.①请你在图1中用直尺和圆规画出线段经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段与交于点O,当时,求的长.52.(2020·江苏淮安·中考真题)如图,是圆的弦,是圆外一点,,交于点,交圆于点,且.(1)判断直线与圆的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.53.(2020·江苏淮安·中考真题)如图,在平行四边形中,点、分别在、上,与相交于点,且.(1)求证:≌;(2)连接、,则四边形 (填“是”或“不是”)平行四边形.54.(2020·江苏扬州·中考真题)如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.55.(2020·江苏扬州·中考真题)如图,内接于,,点E在直径CD的延长线上,且.(1)试判断AE与的位置关系,并说明理由;(2)若,求阴影部分的面积.56.(2020·江苏扬州·中考真题)如图1,已知点O在四边形ABCD的边AB上,且,OC平分,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:;(2)如图2,若,求的值;(3)当四边形ABCD的周长取最大值时,求的值.57.(2020·江苏南京·中考真题)如图,在中,,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)58.(2020·江苏南京·中考真题)如图①,要在一条笔直的路边上建一个燃气站,向同侧的A、B两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于的对称点,线与直线的交点C的位置即为所求, 即在点C处建气站, 所得路线ACB是最短的,为了让明点C的位置即为所求,不妨在直线上另外任取一点,连接,, 证明, 请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),①生市保护区是正方形区域,位置如图③所示②生态保护区是圆形区域,位置如图④所示.59.(2020·江苏泰州·中考真题)如图,正方形的边长为,为的中点,为等边三角形,过点作的垂线分别与边、相交于点、,点、分别在线段、上运动,且满足,连接.(1)求证:.(2)当点在线段上时,试判断的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设,点关于的对称点为,若点落在的内部,试写出的范围,并说明理由.60.(2020·江苏泰州·中考真题)如图,已知线段,点在平面直角坐标系内,(1)用直尺和圆规在第一象限内作出点,使点到两坐标轴的距离相等,且与点的距离等于.(保留作图痕迹,不写作法)(2)在(1)的条件下,若,点的坐标为,求点的坐标.61.(2020·江苏泰州·中考真题)如图,在中,点为的中点,弦、互相垂直,垂足为,分别与、相交于点、,连接、.(1)求证:为的中点.(2)若的半径为,的度数为,求线段的长.62.(2020·江苏苏州·中考真题)问题1:如图①,在四边形中,,是上一点,,.求证:.问题2:如图②,在四边形中,,是上一点,,.求的值.63.(2020·江苏连云港·中考真题)如图,在四边形中,,对角线的垂直平分线与边、分别相交于、.(1)求证:四边形是菱形;(2)若,,求菱形的周长.64.(2020·江苏无锡·中考真题)如图,已知是锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图;作直线,使上的各点到、两点的距离相等;设直线与、分别交于点、,作一个圆,使得圆心在线段上,且与边、相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,,则的半径为________.65.(2020·江苏无锡·中考真题)如图,已知,,.求证:(1);(2).66.(2020·江苏无锡·中考真题)如图,在矩形中,,,点为边上的一点(与、不重合)四边形关于直线的对称图形为四边形,延长交于点,记四边形的面积为.(1)若,求的值;(2)设,求关于的函数表达式.
2020-2022年山东中考数学3年真题汇编 专题15 三角形压轴题(学生卷+教师卷): 这是一份2020-2022年山东中考数学3年真题汇编 专题15 三角形压轴题(学生卷+教师卷),文件包含专题15三角形压轴题2020-2022中考数学真题分项汇编山东专用解析版docx、专题15三角形压轴题2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2020-2022年江苏中考数学3年真题汇编 专题24 概率(学生卷+教师卷): 这是一份2020-2022年江苏中考数学3年真题汇编 专题24 概率(学生卷+教师卷),文件包含专题24概率-三年2020-2022中考数学真题分项汇编江苏专用解析版docx、专题24概率-三年2020-2022中考数学真题分项汇编江苏专用原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
2020-2022年江苏中考数学3年真题汇编 专题23 统计(学生卷+教师卷): 这是一份2020-2022年江苏中考数学3年真题汇编 专题23 统计(学生卷+教师卷),文件包含专题23统计-三年2020-2022中考数学真题分项汇编江苏专用解析版docx、专题23统计-三年2020-2022中考数学真题分项汇编江苏专用原卷版docx等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。