|试卷下载
搜索
    上传资料 赚现金
    四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案)
    立即下载
    加入资料篮
    四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案)01
    四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案)02
    四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案)03
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案)

    展开
    这是一份四川省眉山市仁寿第一中学南校区2022-2023学年高二上学期期中考试数学(理)试题(含答案),共10页。试卷主要包含了考试结束后,将答题卡交回.等内容,欢迎下载使用。

    仁寿一中南校区2021级高二(上)半期考试

        理科数学试题

    本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试时间120分钟.

    注意事项:

    1.答题前,务必将自己的姓名、考号填写在答题卡规定的位置上.

    2.答选择题时,必须使用2B铅笔将答题卡上对应题号的答案标号涂黑,如需改动,用橡皮擦干

    净后,再选涂其它答案标号

    3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.

    4.考试结束后,将答题卡交回.

    (选择题,共60)

    一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

    1、设命题,(  )

    A.        B.            C.         D.

    2、若,则下列命题为假命题的是(  )

    A.若,   B.若, C.若,   D.若ac2bc2,

    3、圆与圆的位置关系是(  )

    A.内切         B.相交            C.外切              D.相离

    4、“”是“直线与圆相切”的(  )

    A.充分不必要条件    B.必要不充分条件         C.充要条件      D.既不充分也不必要条件

    5、一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(  )

    A B2π C3π D4π

    6、已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则(  )

    A.若mnγmγn,αβ          B.若mα,nβ,mn,αβ 

    C.若mα,nβ,αβ,mn                  D.若αβ,βγ,mα,nγ,mn

    7、已知点,若点C是圆上的动点,则△ABC面积的最小值为(  )

    A3 B2 C D

    8、《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑,⊥平面,,,的中点,则异面直线夹角的余弦值为(  )

    A B C D

    9正三棱柱的所有棱长都相等,的中点,则直线与平面所成角的正弦值为(    )

    A.              B.             C.               D.  

     

    10、若点在圆的外部,则实数的取值范围是(  )

    A        B   C       D

    11、与直线切于点,3),且经过点,1)的圆的方程为(  )

    A B

    C D

    12、如图,已知正方体ABCDA1B1C1D1的棱长为a,E,F,G,H,I分别为线段A1D1,A1B1,B1B,BC,B1D1的中点,连接CD1,B1D1,B1C,DE,BF,CI,则下列正确结论的个数是(  )

    ①点E,F,G,H在同一个平面上;

    ②平面CB1D1∥平面EFD

    ③直线DE,BF,CI交于同一点;

    ④直线BF与直线B1C所成角的余弦值为

    A1 B2 C3 D4

    二、填空题:本大题共4小题,每小题5.

    13、已知命题:“,使”为真命题,则实数的取值范围是             

    14、当圆C截直线l所得的弦长最短时,实数             

    15、已知圆C,P是直线上的动点,P作圆的两条切线,切点分别为AB,则四边形PACB面积的最小值为              

    16、在平面四边形ABCD,ADCD,ACBC,DAC=∠BAC30°,现将△ACD沿AC折起,并连接BD,使得平面ACD⊥平面ABC,若所得三棱锥的外接球的表面积为,则三棱锥的体积为       

     

     

     

    解答题解答应写出文字说明,证明过程或演算步骤.

    17、已知为正实数,:实数满足,实数满足.

    (1),为真,求实数的取值范围

    (2)的充分不必要条件,求实数的取值范围.

     

     

    18、如图,在四棱柱ABCDA1B1C1D1,M是线段B1D1上的一个动点,E,F分别是BC,CM的中点.

    1)求证:EF∥平面BDD1B1

    2)设G为棱CD上的中点,求证:平面GEF∥平面BDD1B1

     

     

    19、如图所示,在四棱锥PABCD,底面ABCD是∠DAB60°且边长为的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD

    1)若GAD边的中点,求证:BG⊥平面PAD

    2)若EBC边的中点,能否在棱PC上找一点F,使得PA//平面DEF?并证明你的结论.

     

     

     

    20已知圆过两定点,且圆心在直线上;

    1)求的方程;

    2)过点的直线交圆M,N两点,若,求直线的方程.

     

     

    21、如图,在直角梯形ABCD,ABCD,ABC90°,AB2CD2BC4,EAB的中点,沿DE将△ADE折起,使得点A到点P的位置,PEEBMPB的中点,N为边BC上的动点(与点B,C不重合).

    1)证明:平面EMN⊥平面PBC

    2)已知二面角BENM的余弦值为,试确定N点位置,并说明理由.

     

     

     

     

     

    22、如图,在平面直角坐标系,Oy轴于A,B两点,交直线MN两点.

    1)若|MN|,的值;

    2)设直线AM,AN的斜率分别为k1,k2,试探究斜率之积k1k2是否为定值?若是,请求出该定值;若不是,请说明理由.

    3)证明直线AM,BN的交点必然在一条定直线上,并求出该直线的方程.


    仁寿一中南校区2021级高二(上)半期考试

        理科数学答案

    1

    【答C

    2

    【答B

    3

    【答B

    4

    【答A

    5

    【答B

    6

    【答C

    7

    【答D

    8

    【答C

    9

    【答B

    10

    【答B

    【解析】Cx2+y22x+4y+k0,则圆C:(x12+y+225k,圆心C1,﹣2),半径rk5),∵点P(﹣12)在圆Cx2+y22x+4y+k0的外部,∴|PC|r,即,解得k>﹣15,综上所述,实数k的取值范围是(﹣155).故选:B

    11

    【答D

    【解析】设所求圆的方程为(xa2+yb2r2r0),∵直线yx切于点A3),∴(a2+3b2r2,且r,又∵点B31)在圆上,∴(3a2+1b2r2,将①②③联解,得a2b2r2,∴所求圆的方程为(x22+y224.故选:D

    12

    【答C

    【解析】对于,由题意知EFGH相交,且EHFG平行,所以点EFGH在同一个平面上,命题正确;对于,连接FGEGA1B,则FGA1B,又A1BCD1,所以FGCD1,又因为FG平面CB1D1CD1平面CB1D1,所以FG∥平面CB1D1,又EFB1D1,同理得EF∥平面CB1D1,且EFFGFEFFG平面EFG,所以平面EFG∥平面CB1D1,因为平面EFG∩平面EFDEF,所以平面CB1D1与平面EFD不平行,命题错误;对于,连接BD,延长DEBF交于点M,因为EFBD,且EFBD,所以MFBF,又因为FIBC,且FIBC,所以BCFI四点共面,所以BFCI相交,设BFCI的交点为N,则NFFB,所以MN重合,即直线DEBFCI交于同一点,命题正确;对于,取C1D1的中点K,连接CK,则CKBF,则CKB1C所成的角θ即为直线BF与直线B1C所成的角,连接B1K,设正方体的棱长为2,则B1C2B1KCK,由余弦定理得cosθ,命题正确.综上知,①③④正确.故选:C

    13  【答

    14、【答

    15、【答

    16

    【答案】

    【解析】∠ADC=∠ACB90°,∴△ADC的外接圆圆心为AC中点O1,△ABC的外接圆圆心为AB中点O2,如图所示:过O1作平面ADC的垂线,过O2作平面ABC的垂线,∵平面ADC⊥平面ABC,∴两垂线交于点O2,可得O2为三棱锥DABC外接球的球心,由三棱锥DABC 外接球的表面积为4π,可得外接球的半径r1AB2BC1ACCDAD,则三棱锥DABC的体积为BC×SACD

    17

    【解】(1为真则有:为真则有:,为真,则的取值范围是:

    2的充分不必要条件,则的充分不必要条件;为真有:,为真有:;所以,所以,所以的取值范围是:.

    18

    【解】证明:(1)在四棱柱ABCDA1B1C1D1中,连接BM,如图,因EF分别是BCCM的中点,则有EFBM,又EF平面BDD1B1BM平面BDD1B1,所以EF∥平面BDD1B1

    2GDC中点,使得平面GEF∥平面BDD1B1,理由如下:取CD的中点G,连接EGFG,而EBC的中点,于是得EGBD,而EG平面BDD1B1BD平面BDD1B1,从而得EG∥平面BDD1B1,由(1)知EF∥平面BDD1B1EFEGE,且EFEG平面GEF,因此,平面GEF∥平面BDD1B1,所以当GDC的中点时,平面GEF∥平面BDD1B1

    19

    【解】证明:(1)在底面菱形ABCD中,∠DAB60°,GAD边的中点,所以BGAD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCDAD,所以BG⊥平面PAD

    2连接DEEF,DF,DEAC于点H,连接HF

    因为PA//平面DEFPA平面PAC,平面PAC平面DEF,所以PA//;

    由于底面ABCD为菱形,的中点,易证,所以,由PA//,可得

    所以存在点为棱上靠近的三等分点,可使PA//平面DEF

     

    20

    【答案】(1

    2

    【解析】(1)∵圆心C在直线上,

    ∴设圆C的圆心为(a a2),半径为r

    又∵圆C过点,两点,

    则圆C的方程为

    注:用圆的一般式方程,或求AB的中垂线方程也可。

    2)当直线l的斜率不存在时,直线方程为x4

    联立

    解得M43),N4-1),

    此时|MN|4,符合题意

    当直线l的斜率存在时,设直线l的方程为y-4kx4),则kxy4k+40

    ∴圆心到直线的距离为,解得

    则直线l的方程为

    综上,直线l的方程为

    21

    【解】(1)证明:∵PEEBPEEDEBEDE,∴PE⊥平面EBCD,∵BC平在EBCD,∴PEBC,∵BCEBEBPEE,∴BC⊥平面PEB,∵ME平面PEB,∴BCEM,∵PEEBPMMB,∴EMPB,∵BCEMPBEMBCPBB,∴EM⊥平面PBC,∴平面EMN⊥平面PBC

    2)过MMQEBQ,∵PEEB,∴PEMQ,由(1)知PE⊥平面EBCD,∴MQ⊥平面EBCD,过QQRENR,连接MR,∵MQ⊥平面EBCDEN平面EBCD,∴MQEN,∵MQQRQ,∴EN⊥平面MQR,∵EN⊥平面MQRMR平面MQR,∴ENMR,∴∠MRQ是二面角BENM的平面角,∵PEEBBC2,则MQ1,在RtBEN中,设BNx0x2),则EN,∵RtBENRtREQ,∴,∴RQ,∴tan,∵二面角BENM的余弦值为,∴cos,∴tan,解得x102),∴NBC中点.

    22

    【解】(1)圆O的圆心为(00),到直线ykx1的距离为d,∵|MN|2,由此解得k21k=±1

    2)将ykx1代入圆O方程x2+y24,并整理得,得(1+k2x22kx30,该方程必有两根,且为MN的横坐标.故设Mx1y1),Nx2y2),由韦达定理x1x2A02),∴,同理k2k于是k1k2=(k)(k)=k2k23.即证得 k1k2恒为定值﹣3

    3)注意到ANBN,设直线BN的斜率为k3,则k2k3k3=﹣1,即k13k3.直线AMyk1x+2,直线BNyk3x2的交点满足,即3y+6y2,解得y=﹣4;故直线AMBN交点必在定直线y=﹣4上.证明完毕.

    相关试卷

    2023-2024学年四川省眉山市仁寿第一中学南校区高二上学期期中数学试题含答案: 这是一份2023-2024学年四川省眉山市仁寿第一中学南校区高二上学期期中数学试题含答案,文件包含四川省眉山市仁寿第一中学南校区2023-2024学年高二上学期期中数学试题答案docx、四川省眉山市仁寿第一中学南校区2023-2024学年高二上学期期中数学试题docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    2023-2024学年四川省眉山市仁寿第一中学校南校区高三上学期10月月考数学(理)试题含答案: 这是一份2023-2024学年四川省眉山市仁寿第一中学校南校区高三上学期10月月考数学(理)试题含答案,文件包含四川省眉山市仁寿第一中学校南校区2023-2024学年高三上学期10月月考数学理试题答案docx、四川省眉山市仁寿第一中学校南校区2023-2024学年高三上学期10月月考数学理试题docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    四川省眉山市仁寿第一中学南校区2022-2023学年高二下学期数学(理)期末模拟试题: 这是一份四川省眉山市仁寿第一中学南校区2022-2023学年高二下学期数学(理)期末模拟试题,共9页。试卷主要包含了选择题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map