天津市滨海新区第四共同体市级名校2022年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )
A.26×105 B.2.6×102 C.2.6×106 D.260×104
2.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
3.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A. B. C. D.
4.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )
A.π B. C. D.
5.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )
A.8 B. C. D.
6.把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
7.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
A.5,5 B.5,6 C.6,5 D.6,6
8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
9.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
10.已知直线与直线的交点在第一象限,则的取值范围是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
12.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
13.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为________cm
14.计算_______.
15.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
16.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).
17.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
三、解答题(共7小题,满分69分)
18.(10分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.
(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;
(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?
19.(5分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
20.(8分)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.
21.(10分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
(1)二月份冰箱每台售价为多少元?
(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
22.(10分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
23.(12分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.
24.(14分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.
求证:;
若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
260万=2600000=.
故选C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
2、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
3、C
【解析】
画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是:.
故选C.
【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
4、B
【解析】
连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
【详解】
解:连接OB,OC.
∵∠BOC=2∠BAC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=1,
∴的长=,
故选B.
【点睛】
考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
5、D
【解析】
根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
【详解】
∵正方形ABCD的面积为16,正方形BPQR面积为25,
∴正方形ABCD的边长为4,正方形BPQR的边长为5,
在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
∵四边形ABCD是正方形,
∴∠A=∠D=∠BRQ=90°,
∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
∴∠ABR=∠DRS,
∵∠A=∠D,
∴△ABR∽△DRS,
∴,
∴,
∴DS=,
∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
故选:D.
【点睛】
本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
6、A
【解析】
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
【详解】
由①,得x≥2,
由②,得x<1,
所以不等式组的解集是:2≤x<1.
不等式组的解集在数轴上表示为:
.
故选A.
【点睛】
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7、A
【解析】
试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
平均数为:×(6+3+4+1+7)=1,
按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
故选A.
考点:中位数;算术平均数.
8、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
9、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
10、C
【解析】
根据题意画出图形,利用数形结合,即可得出答案.
【详解】
根据题意,画出图形,如图:
当时,两条直线无交点;
当时,两条直线的交点在第一象限.
故选:C.
【点睛】
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、 (-1,0)
【解析】
根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
解:如图所示
∵正方形OBB1C,
∴OB1=,B1所在的象限为第一象限;
∴OB2=()2,B2在x轴正半轴;
∴OB3=()3,B3所在的象限为第四象限;
∴OB4=()4,B4在y轴负半轴;
∴OB5=()5,B5所在的象限为第三象限;
∴OB6=()6=1,B6在x轴负半轴.
∴B6(-1,0).
故答案为(-1,0).
12、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
13、15
【解析】
如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,
∴∠ADB=90°,BD=CD=30cm,
∴AD=(cm),
连接圆心O和切点E,则∠BEO=90°,
又∵OD=OE,OB=OB,
∴△BEO≌△BDO,
∴BE=BD=30cm,
∴AE=AB-BE=50-30=20cm,
设OD=OE=x,则AO=40-x,
在Rt△AOE中,由勾股定理可得:,
解得:(cm).
即能截得的最大圆的半径为15cm.
故答案为:15.
点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.
14、
【解析】
根据同底数幂的乘法法则计算即可.
【详解】
故答案是:
【点睛】
本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
15、直角三角形.
【解析】
根据题意,画出图形,用垂直平分线的性质解答.
【详解】
点O落在AB边上,
连接CO,
∵OD是AC的垂直平分线,
∴OC=OA,
同理OC=OB,
∴OA=OB=OC,
∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
∴∠C是直角.
∴这个三角形是直角三角形.
【点睛】
本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
16、.
【解析】
解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案为.
点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.
17、4.02×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:40.2万=4.02×1,
故答案为:4.02×1.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题(共7小题,满分69分)
18、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.
【解析】
(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;
(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.
【详解】
解:(1)设A型足球x个,则B型足球(100-x)个,
∴ 40x +60(100-x)=5200 ,
解得:x=40 ,
∴100-x=100-40=60个,
答:A型足球进了40个,B型足球进了60个.
(2)设A型足球x个,则B型足球(100-x)个,
100-x≥ ,
解得:x≤60 ,
设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,
∵k=-20,∴y随x的增大而减小,
∴当x=60时,y最小=4800元.
【点睛】
本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.
19、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
【解析】
(1)当t=3时,点E为AB的中点,
∵A(8,0),C(0,6),
∴OA=8,OC=6,
∵点D为OB的中点,
∴DE∥OA,DE=OA=4,
∵四边形OABC是矩形,
∴OA⊥AB,
∴DE⊥AB,
∴∠OAB=∠DEA=90°,
又∵DF⊥DE,
∴∠EDF=90°,
∴四边形DFAE是矩形,
∴DF=AE=3;
(2)∠DEF的大小不变;理由如下:
作DM⊥OA于M,DN⊥AB于N,如图2所示:
∵四边形OABC是矩形,
∴OA⊥AB,
∴四边形DMAN是矩形,
∴∠MDN=90°,DM∥AB,DN∥OA,
∴, ,
∵点D为OB的中点,
∴M、N分别是OA、AB的中点,
∴DM=AB=3,DN=OA=4,
∵∠EDF=90°,
∴∠FDM=∠EDN,
又∵∠DMF=∠DNE=90°,
∴△DMF∽△DNE,
∴,
∵∠EDF=90°,
∴tan∠DEF=;
(3)作DM⊥OA于M,DN⊥AB于N,
若AD将△DEF的面积分成1:2的两部分,
设AD交EF于点G,则点G为EF的三等分点;
①当点E到达中点之前时,如图3所示,NE=3﹣t,
由△DMF∽△DNE得:MF=(3﹣t),
∴AF=4+MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
设直线AD的解析式为y=kx+b,
把A(8,0),D(4,3)代入得: ,
解得: ,
∴直线AD的解析式为y=﹣x+6,
把G(,)代入得:t=;
②当点E越过中点之后,如图4所示,NE=t﹣3,
由△DMF∽△DNE得:MF=(t﹣3),
∴AF=4﹣MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
代入直线AD的解析式y=﹣x+6得:t=;
综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
考点:四边形综合题.
20、x+1,2.
【解析】
先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.
【详解】
原式=x2+x﹣(x2﹣1)
=x2+x﹣x2+1
=x+1,
当x=1时,原式=2.
【点睛】
本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.
21、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
【解析】
(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
【详解】
(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
根据题意,得: =,
解得:x=4000,
经检验,x=4000是原方程的根.
答:二月份冰箱每台售价为4000元.
(2)根据题意,得:3500y+4000(20﹣y)≤76000,
解得:y≥3,
∵y≤2且y为整数,
∴y=3,9,10,11,2.
∴洗衣机的台数为:2,11,10,9,3.
∴有五种购货方案.
(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
∵(2)中的各方案利润相同,
∴1﹣a=0,
∴a=1.
答:a的值为1.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
22、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关
【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)
利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;
【详解】
(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
,解得,
(2) 设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,
17400≤1000a+800(20-a)≤18000,解得7≤a≤10,
∵a为自然数,
∴有a为7、8、9、10共四种方案,
(3) 甲种型号手机每部利润为1000×40%=400,
w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,
当m=80时,w始终等于8000,取值与a无关.
【点睛】
本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.
23、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
【解析】
分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
则点A(﹣2,0),B(0,2),
把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
∴该抛物线的解析式为y=﹣x2﹣x+2;
(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
(3)如图,作PE⊥x轴于点E,交AB于点D,
在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).
点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
24、(1)证明见解析;(2)补图见解析;.
【解析】
根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;
根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论.
【详解】
解:,
,
,
,
,
,
,
,
;
补全图形,如图所示:
,,
,,
,,
,
,,且,
,
,
,
四边形ABGD是平行四边形,
,
平行四边形ABGD是菱形,
设,
,
,
,
过点B作于H,
.
.
故答案为(1)证明见解析;(2)补图见解析;.
【点睛】
本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.
2022年福建三明市市级名校中考数学考前最后一卷含解析: 这是一份2022年福建三明市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算结果正确的是,下列实数中,为无理数的是等内容,欢迎下载使用。
2022届云南省红河州市级名校中考数学考前最后一卷含解析: 这是一份2022届云南省红河州市级名校中考数学考前最后一卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题等内容,欢迎下载使用。
2022届江苏省兴化市市级名校中考数学考前最后一卷含解析: 这是一份2022届江苏省兴化市市级名校中考数学考前最后一卷含解析,共23页。试卷主要包含了股市有风险,投资需谨慎,某排球队名场上队员的身高等内容,欢迎下载使用。