|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析01
    四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析02
    四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析

    展开
    这是一份四川省宜宾市宜宾县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是,定义,将抛物线绕着点,下列四个命题中,真命题是,函数的自变量x的取值范围是,若,,则的值是,某市2017年国内生产总值等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )

    A.140° B.160° C.170° D.150°
    2.如图图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B. C. D.
    3.化简:-,结果正确的是(  )
    A.1 B. C. D.
    4.下列命题是真命题的是( )
    A.过一点有且只有一条直线与已知直线平行
    B.对角线相等且互相垂直的四边形是正方形
    C.平分弦的直径垂直于弦,并且平分弦所对的弧
    D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
    5.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是(  )
    A.方有两个相等的实数根 B.方程有一根等于0
    C.方程两根之和等于0 D.方程两根之积等于0
    6.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( ).
    A. B.
    C. D.
    7.下列四个命题中,真命题是(  )
    A.相等的圆心角所对的两条弦相等
    B.圆既是中心对称图形也是轴对称图形
    C.平分弦的直径一定垂直于这条弦
    D.相切两圆的圆心距等于这两圆的半径之和
    8.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    9.若,,则的值是(  )
    A.2 B.﹣2 C.4 D.﹣4
    10.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )
    A. B.
    C. D.
    11.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于(  )

    A.75° B.90° C.105° D.115°
    12.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为(  )
    A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.化简;÷(﹣1)=______.
    14.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
    品种

    第1年

    第2年

    第3年

    第4年

    第5年

    品种



    9.8

    9.9

    10.1

    10

    10.2





    9.4

    10.3

    10.8

    9.7

    9.8



    经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
    15.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
    16.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.

    17.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.

    18.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
    (1)求线段AQ的长;(用含t的代数式表示)
    (2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
    (3)设△APQ的面积为S,求S与t的函数关系式;
    (4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.

    20.(6分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
    求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
    21.(6分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.
    (1)求与之间的函数关系式,并注明的取值范围;
    (2)为何值时,取最大值?最大值是多少?

    22.(8分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
    求证:△ABE≌△CAD;求∠BFD的度数.
    23.(8分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).
    (1)求平移后的抛物线的表达式.
    (2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?
    (3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.

    24.(10分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
    25.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
    (1)求A种,B种树木每棵各多少元;
    (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
    26.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
    (1)这四个班参与大赛的学生共__________人;
    (2)请你补全两幅统计图;
    (3)求图1中甲班所对应的扇形圆心角的度数;
    (4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.
    27.(12分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.
    考点:角度的计算
    2、A
    【解析】
    A. 是轴对称图形,是中心对称图形,故本选项正确;
    B. 是中心对称图,不是轴对称图形,故本选项错误;
    C. 不是中心对称图,是轴对称图形,故本选项错误;
    D. 不是轴对称图形,是中心对称图形,故本选项错误。
    故选A.
    3、B
    【解析】
    先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
    【详解】

    【点睛】
    本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
    4、D
    【解析】
    根据真假命题的定义及有关性质逐项判断即可.
    【详解】
    A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
    B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
    C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
    D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
    故选D.
    【点睛】
    本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
    5、C
    【解析】
    试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
    解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
    把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
    ∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
    ∴1+(﹣1)=0,
    即只有选项C正确;选项A、B、D都错误;
    故选C.
    6、D
    【解析】
    将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.
    【详解】
    由题意得,a=-.
    设旋转180°以后的顶点为(x′,y′),
    则x′=2×0-(-2)=2,y′=2×3-5=1,
    ∴旋转180°以后的顶点为(2,1),
    ∴旋转180°以后所得图象的解析式为:.
    故选D.
    【点睛】
    本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.
    7、B
    【解析】
    试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;
    B. 圆既是中心对称图形也是轴对称图形,正确;
    C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;
    D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.
    故选B.
    8、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.
    9、D
    【解析】
    因为,所以,因为,故选D.
    10、D
    【解析】
    分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.
    详解:设2016年的国内生产总值为1,
    ∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;
    ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),
    ∵这两年GDP年平均增长率为x%, ∴2018年的国内生产总值也可表示为:,
    ∴可列方程为:(1+12%)(1+7%)=.故选D.
    点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.
    11、C
    【解析】
    分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
    详解:∵AB∥EF,
    ∴∠BDE=∠E=45°,
    又∵∠A=30°,
    ∴∠B=60°,
    ∴∠1=∠BDE+∠B=45°+60°=105°,
    故选C.
    点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    12、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将27100用科学记数法表示为:. 2.71×104.
    故选:C.
    【点睛】
    本题考查科学记数法—表示较大的数。

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    14、甲
    【解析】
    根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
    【详解】
    甲种水稻产量的方差是:

    乙种水稻产量的方差是:

    ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
    15、﹣18
    【解析】
    要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
    【详解】
    a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
    =ab(a﹣b)2,
    当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
    故答案为:﹣18.
    【点睛】
    本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
    16、1
    【解析】
    根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.
    【详解】
    ∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,
    ∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,
    ∵点B是这条抛物线上的另一点,且AB∥x轴,
    ∴点B的横坐标是﹣3,
    ∴AB=|0﹣(﹣3)|=3,
    ∴正方形ABCD的周长为:3×4=1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.
    17、60°
    【解析】
    先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
    【详解】
    ∵DA⊥CE,
    ∴∠DAE=90°,
    ∵∠1=30°,
    ∴∠BAD=60°,
    又∵AB∥CD,
    ∴∠D=∠BAD=60°,
    故答案为60°.
    【点睛】
    本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.
    18、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
    【解析】
    分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
    (3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
    详解:(1)如图1,

    Rt△ABC中,∠A=30°,AB=8,
    ∴BC=AB=4,
    ∴AC=,
    由题意得:CQ=t,
    ∴AQ=4﹣t;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
    ①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
    ②当PQ⊥AB时,如图2,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,
    ∴,
    t=;
    ③当PQ⊥AC时,如图3,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,

    t=;
    综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
    (3)分两种情况:
    ①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,

    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
    ②当P在边BC上时,即1<t≤3,如图5,

    由题意得:PB=2(t﹣1),
    ∴PC=4﹣2(t﹣1)=﹣2t+6,
    ∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
    综上所述,S与t的函数关系式为:S=;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
    ①当P在边AB上时,如图6,

    AP=PQ,作PG⊥AC于G,则AG=GQ,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴AG=4t,
    由AQ=2AG得:4﹣t=8t,t=,
    ②当P在边AC上时,如图7,AQ=PQ,

    Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
    ∴,
    t=或﹣(舍),
    综上所述,t的值为或.
    点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
    20、(1),y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(,0),见解析.
    【解析】
    (1)把A(1,4)代入y=,求出m=4,把B(4,n)代入y=,求出n=1,然后把把A(1,4)、(4,1)代入y=kx+b,即可求出一次函数解析式;
    (2)根据图像解答即可;
    (3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.
    【详解】
    解:(1)把A(1,4)代入y=,得:m=4,
    ∴反比例函数的解析式为y=;
    把B(4,n)代入y=,得:n=1,
    ∴B(4,1),
    把A(1,4)、(4,1)代入y=kx+b,
    得:,
    解得:,
    ∴一次函数的解析式为y=﹣x+5;
    (2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;
    ∴当x>0时,kx+b<的解集为0<x<1或x>4;
    (3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,
    ∵B(4,1),
    ∴B′(4,﹣1),
    设直线AB′的解析式为y=px+q,
    ∴,
    解得,
    ∴直线AB′的解析式为,
    令y=0,得,
    解得x=,
    ∴点P的坐标为(,0).

    【点睛】
    本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.
    21、(1);(1)时,取最大值,为.
    【解析】
    (1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;
    (1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.
    【详解】
    解:(1)分别延长DE,FP,与BC的延长线相交于G,H,

    ∵AF=x,
    ∴CH=x-4,
    设AQ=z,PH=BQ=6-z,
    ∵PH∥EG,
    ∴,即,
    化简得z=,
    ∴y=•x=-x1+x (4≤x≤10);

    (1)y=-x1+x=-(x-)1+,
    当x=dm时,y取最大值,最大值是dm1.
    【点睛】
    本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.
    22、(1)证明见解析;(2).
    【解析】
    试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;
    (2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.
    试题解析:(1)∵△ABC为等边三角形,
    ∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
    在△ABE和△CAD中,
    AB=CA, ∠BAC=∠C,AE =CD,
    ∴△ABE≌△CAD(SAS),
    (2)∵△ABE≌△CAD,
    ∴∠ABE=∠CAD,
    ∵∠BAD+∠CAD=60°,
    ∴∠BAD+∠EBA=60°,
    ∵∠BFD=∠ABE+∠BAD,
    ∴∠BFD=60°.
    23、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).
    【解析】
    (1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;
    (2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;
    (3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.
    【详解】
    (1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),
    ∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,
    ∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,
    ∴平移后抛物线的二次项系数为1,即a=1,
    ∴平移后抛物线的表达式为y=(x+3)(x﹣1),
    整理得:y=x2+2x﹣3;
    (2)∵y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),
    则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),
    如图1,

    连接B,C′,与直线x=﹣1的交点即为所求点P,
    由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,
    则,
    解得,
    所以点P坐标为(﹣1,﹣2);
    (3)如图2,

    由得,即D(﹣1,1),
    则DE=OD=1,
    ∴△DOE为等腰直角三角形,
    ∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,
    ∵BO=1,
    ∴BD=,
    ∵∠BOD=135°,
    ∴点M只能在点D上方,
    ∵∠BOD=∠ODM=135°,
    ∴当或时,以M、O、D为顶点的三角形△BOD相似,
    ①若,则,解得DM=2,
    此时点M坐标为(﹣1,3);
    ②若,则,解得DM=1,
    此时点M坐标为(﹣1,2);
    综上,点M坐标为(﹣1,3)或(﹣1,2).
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.
    24、x=15,y=1
    【解析】
    根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
    (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
    【详解】
    依题意得,

    化简得,,
    解得, .,
    检验当x=15,y=1时,,,
    ∴x=15,y=1是原方程的解,经检验,符合题意.
    答:x=15,y=1.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    25、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
    【解析】
    (1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
    (2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
    【详解】
    解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
    ,解得 ,
    答:A种树木每棵2元,B种树木每棵80元.
    (2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
    又2-x≥0,解得x≤2.∴1≤x≤2.
    设实际付款总额是y元,则y=0.9[2x+80(2-x)].
    即y=18x+7 3.
    ∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
    答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.
    26、(1)100;(2)见解析;(3)108°;(4)1250.
    【解析】
    试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;
    (2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;
    (3)根据甲班级所占的百分比,再乘以360°,即可得出答案;
    (4)根据样本估计总体,可得答案.
    试题解析:(1)这四个班参与大赛的学生数是:
    30÷30%=100(人);
    故答案为100;
    (2)丁所占的百分比是:×100%=35%,
    丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
    则丙班得人数是:100×15%=15(人);
    如图:

    (3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;
    (4)根据题意得:2000×=1250(人).
    答:全校的学生中参与这次活动的大约有1250人.
    考点:条形统计图;扇形统计图;样本估计总体.
    27、x=60
    【解析】
    设有x个客人,根据题意列出方程,解出方程即可得到答案.
    【详解】
    解:设有x个客人,则

    解得:x=60;
    ∴有60个客人.
    【点睛】
    本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.

    相关试卷

    河北保定市博野县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份河北保定市博野县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,已知,,且,则的值为,若关于x的一元二次方程x,化简的结果是等内容,欢迎下载使用。

    2021-2022学年浙江省丽水市莲都区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年浙江省丽水市莲都区重点达标名校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,在实数,有理数有等内容,欢迎下载使用。

    2021-2022学年沈阳市大东区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年沈阳市大东区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了答题时请按要求用笔,一元二次方程的根的情况是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map