搜索
    上传资料 赚现金
    英语朗读宝

    南京市2023届高三年级学情调研数学参考答案 试卷

    南京市2023届高三年级学情调研数学参考答案第1页
    南京市2023届高三年级学情调研数学参考答案第2页
    南京市2023届高三年级学情调研数学参考答案第3页
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    南京市2023届高三年级学情调研数学参考答案

    展开

    这是一份南京市2023届高三年级学情调研数学参考答案,共7页。试卷主要包含了09,25.2分,8.8分等内容,欢迎下载使用。
    南京市2023届高三年级学情调研                数学参考答案             2022.09一、单项选择题:本大题共8小题,每小题5分,共40分. 1B     2D     3A     4C     5D     6A    7B     8C二、多项选择题:本大题共4小题,每题5分,共20分. 9BC     10AC     11ACD      12ABD填空题:本大题共4小题,每题5分,共20分. 1314      144       152     16(2π1π]四、解答题:本大题共6小题,共70分. 17(本小题满分10分)1ABD所以sinADB1················································2因为0°ADB135°所以ADB90°所以BD3···················································4   2ADEDEBD2因为ADE90°所以AEcosDAE··················································6ACDAC2AE2AD3cosDAC所以CD2AD2AC22ADACcosDAC50CD5·················8所以cosADC·············································10  18.(本小题满分12分)1解:因为a16a212a320,所以a2a16a3a28因为数列{ an1an}为等差数列,所以an1an6(n1)×22n4·······························2n2时,an(anan1)(an1an2)+…+(a2a1)a1·············4(2n2)2n666n23n2n1时,a16满足ann23n2综上,ann23n2·············································62证明:由1········································8所以 Sn+…+·····································10    因为nN*,故0所以Sn·····················································12 19.(本小题满分12分)1)证明:连ACBD于点N,连MN因为底面ABCD为平行四边形,所以NAC的中点························2因为MPC中点,所以MNPAPA平面MBDMN 平面MBD所以PA平面MBD···············································42方法1CD中点E,连AEABAD四边形ABCD为平行四边形,所以四边形ABCD菱形,BAD120°所以∠ADC60°因此ACD为等边三角形,所以AECDAEAB·········································6PA平面ABCDABAEAP分别为xyz轴建立空间直角坐标系,A(000)B(200)P(002)C(10)D(10)M(1)所以(200)(1)(10)设平面AMB的一个法向量为(xyz),取x0y2z=-(02,-)················································8设平面AMD的一个法向量为(xyz),取xy1z=-(1,-)················································10cos>=(0π)所以二面角BAMD的平面角的正弦值为··························12          方法2ABAD四边形ABCD为平行四边形,所以四边形ABCD菱形BAD120°所以∠ABC60°因此ABC为等边三角形AB2NAC的中点,所以BNAM中点F,连BFDFRtBMNMN1BN,所以BM2··························6又因为AB2,所以BFAM同理可证DFAM,所以BFD即为二面角BAMD的平面角············8RtAMN中,ANMN1AMBAMBF同理DAM计算得DF·····································10BD2 所以cosBFDBFD(0π)所以sinBFD所以二面角BAMD的平面角的正弦值为··························12            20.(本小题满分12分)解:1K26.25················································2因为6.256.635所以没有99%握认为该校首次参加英语四级考试的学生能否合格与性别有关·······························································32)设2人中合格人数为X,则X的可能取值为012P(X0)          P(X1)P(X2) ···················································6所以2人中合格人数的概率分布为X012P所以数学期望E(X)0×1×2× ································73该校首次参加英语四级考试的每位学生合格的概率0.8·············8两次考试后两人全部合格可分为三类:第一类:两名学生第一次考试都合格,概率为0.820.64第二类:两名学生中有一位第一次考试不合格,第二次合格,概率为C×0.8×0.2×0.90.288第三类:两名学生中第一次考试都不合格,第二次都合格,概率为0.22×0.920.0324······11所以0.640.2880.3240.9604所以2名学生至多两次四级考试后,这两人全部合格的概率为0.9604 ·········12 21.(本小题满分12分)解:1)抛物线y22px焦点F(0)因为P(02),且APF中点,所以A(1)因为A在抛物线上,所以12p×,解得p·····························22由题意知直线l的斜率存在.设直线l的方程为ykx2A(x1y1)B(x2y2)y122x1y222x2消去xky22y40y1y2y1y2 ··············································4假设存在定点T(mn),则(x1my1n)(x2my2n)所以·(x1m)(x2m)(y1n)( y2n)·································6(y12m)(y22m)(y1n)( y2n) y12 y22m(y12y22)m2y1y2n(y1y2)n2y12 y22m[(y1y2)22y1y2]m2y1y2n(y1y2)n2········8m()m2n2(42m)(4m42n)m2n2·························10要使得·为常数,则mn4所以存在定点T(4),此时·m2n218·····························12 22(本小题满分12分)解:1f (x)eaxxf (x)aeax1·······························1f (x)0x=-lnax<-lna时,f (x)0x>-lna时,f (x)0所以f (x)的减区间为(-∞,lna),增区间为(lna,+∞)···············32)设g (x)f (x)(1ax2)eaxax2x1 x[0,+∞)g(x)aeaxax1g′′(x)a(aeax1)a f (x)a1时,因为x0,所以g′′(x)a(a1)0,从而g(x)[0,+∞)上单调递增因此g(x)g(0)a10,故g (x)[0,+∞)上单调递增,所以g (x)g (0)0恒成立,因此a1符合题意···············································70a1时,由(1)知,当x(0lna)时,g′′(x)a f (x)0所以g(x)单调递减,因此,当x(0lna)时,g(x)g(0)a10所以g (x) 单调递减,g (lna)g (0)0,与g (x)0恒成立矛盾 因此0a1不符合题意···········································9a0此时g (x)=-xg (1)=-10g (x)0恒成立矛盾因此a0不符合题意·············································10a0时,此时g ()e210g (x)0恒成立矛盾因此a0不符合题意综上,a1····················································12 

    相关试卷

    江苏省南京市2023-2024学年高三上学期9月学情调研数学试卷及参考答案:

    这是一份江苏省南京市2023-2024学年高三上学期9月学情调研数学试卷及参考答案,文件包含3南京市2024届高三年级学情调研数学参考答案pdf、3江苏省南京市2023-2024学年高三上学期9月学情调研数学pdf等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    南京市2024 届高三年级学情调研数学试卷及参考答案:

    这是一份南京市2024 届高三年级学情调研数学试卷及参考答案,文件包含南京市2024届高三年级学情调研数学试卷pdf、南京市2024届高三年级学情调研数学答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    南京市2024 届高三年级学情调研考试数学试卷及参考答案:

    这是一份南京市2024 届高三年级学情调研考试数学试卷及参考答案,文件包含数学试题南京市2024届高三年级学情调研pdf、数学答案南京市2024届高三年级学情调研pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map