![南京市2023届高三年级学情调研数学参考答案第1页](http://img-preview.51jiaoxi.com/3/3/13626363/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南京市2023届高三年级学情调研数学参考答案第2页](http://img-preview.51jiaoxi.com/3/3/13626363/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南京市2023届高三年级学情调研数学参考答案第3页](http://img-preview.51jiaoxi.com/3/3/13626363/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
南京市2023届高三年级学情调研数学参考答案
展开
这是一份南京市2023届高三年级学情调研数学参考答案,共7页。试卷主要包含了09,25.2分,8.8分等内容,欢迎下载使用。
南京市2023届高三年级学情调研 数学参考答案 2022.09一、单项选择题:本大题共8小题,每小题5分,共40分. 1.B 2.D 3.A 4.C 5.D 6.A 7.B 8.C二、多项选择题:本大题共4小题,每题5分,共20分. 9.BC 10.AC 11.ACD 12.ABD三、填空题:本大题共4小题,每题5分,共20分. 13.14 14.4 15.2- 16.(-2π,1-π]四、解答题:本大题共6小题,共70分. 17.(本小题满分10分)解:(1)在△ABD中,由=,得=,所以sin∠ADB=1.················································2分因为0°<∠ADB<135°,所以∠ADB=90°,所以BD==3.···················································4分 (2)在△ADE中,DE=BD=2,因为∠ADE=90°,所以AE==,cos∠DAE==.··················································6分在△ACD中,AC=2AE=2,AD=3,cos∠DAC=,所以CD2=AD2+AC2-2AD∙AC∙cos∠DAC=50,即CD=5,·················8分所以cos∠ADC==-.·············································10分 18.(本小题满分12分)(1)解:因为a1=6,a2=12,a3=20,所以a2-a1=6,a3-a2=8.又因为数列{ an+1-an}为等差数列,所以an+1-an=6+(n-1)×2=2n+4.·······························2分当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1·············4分=(2n+2)+2n+…+6+6=+6=n2+3n+2.当n=1时,a1=6满足an=n2+3n+2,综上,an=n2+3n+2.·············································6分(2)证明:由(1)得===-,········································8分所以 Sn=-+-+…+-=-.·····································10分 因为n∈N*,故>0,所以Sn<.·····················································12分 19.(本小题满分12分)(1)证明:连AC交BD于点N,连MN.因为底面ABCD为平行四边形,所以N为AC的中点.························2分因为M为PC中点,所以MN∥PA.又PA平面MBD,MN 平面MBD,所以PA∥平面MBD.···············································4分(2)方法1取CD中点E,连AE.因为AB=AD,四边形ABCD为平行四边形,所以四边形ABCD为菱形,又∠BAD=120°,所以∠ADC=60°,因此△ACD为等边三角形,所以AE⊥CD,即AE⊥AB.·········································6分又PA⊥平面ABCD,故以AB,AE,AP分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(2,0,0),P(0,0,2),C(1,,0),D(-1,,0),M(,,1),所以=(2,0,0),=(,,1),=(-1,,0).设平面AMB的一个法向量为=(x,y,z),则即,取x=0,y=2,z=-,即=(0,2,-).················································8分设平面AMD的一个法向量为=(x,y,z),则即,取x=,y=1,z=-,即=(,1,-).················································10分则cos<,>==,又<,>∈(0,π),所以二面角B-AM-D的平面角的正弦值为.··························12分 方法2因为AB=AD,四边形ABCD为平行四边形,所以四边形ABCD为菱形.又∠BAD=120°,所以∠ABC=60°,因此△ABC为等边三角形.又AB=2,N为AC的中点,所以BN=.取AM中点F,连BF,DF,在Rt△BMN中,MN=1,BN=,所以BM=2.··························6分又因为AB=2,所以BF⊥AM,同理可证DF⊥AM,所以∠BFD即为二面角B-AM-D的平面角.············8分在Rt△AMN中,AN=MN=1,AM=.在△BAM中,BF==.同理在△DAM中计算得DF=.·····································10分又BD=2, 所以cos∠BFD==-.又∠BFD∈(0,π),所以sin∠BFD==,所以二面角B-AM-D的平面角的正弦值为.··························12分 20.(本小题满分12分)解:(1)K2==6.25.················································2分因为6.25<6.635,所以没有99%的把握认为该校首次参加英语四级考试的学生能否合格与性别有关.·······························································3分(2)设2人中合格人数为X,则X的可能取值为0,1,2.P(X=0)==, P(X=1)==,P(X=2)== , ···················································6分所以2人中合格人数的概率分布为X012P所以数学期望E(X)=0×+1×+2×=. ································7分(3)该校首次参加英语四级考试的每位学生合格的概率为=0.8.·············8分两次考试后两人全部合格可分为三类:第一类:两名学生第一次考试都合格,则概率为0.82=0.64;第二类:两名学生中有一位第一次考试不合格,第二次合格,则概率为C×0.8×0.2×0.9=0.288;第三类:两名学生中第一次考试都不合格,第二次都合格,则概率为0.22×0.92=0.0324;······11分所以0.64+0.288+0.324=0.9604,所以2名学生至多两次四级考试后,这两人全部合格的概率为0.9604. ·········12分 21.(本小题满分12分)解:(1)抛物线y2=2px的焦点F(,0).因为P(0,2),且A为PF中点,所以A(,1).因为A在抛物线上,所以1=2p×,解得p=.·····························2分(2)由题意知直线l的斜率存在.设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2),则y12=2x1,y22=2x2.由消去x,得ky2-2y+4=0,则y1+y2=,y1y2= .··············································4分假设存在定点T(m,n),则=(x1-m,y1-n),=(x2-m,y2-n),所以·=(x1-m)(x2-m)+(y1-n)( y2-n)·································6分=(y12-m)(y22-m)+(y1-n)( y2-n) =y12 y22-m(y12+y22)+m2+y1y2-n(y1+y2)+n2=y12 y22-m[(y1+y2)2-2y1y2]+m2+y1y2-n(y1+y2)+n2········8分=-m(-)+m2+-+n2=(4-2m)+(4m+4-2n)+m2+n2.·························10分要使得·为常数,则解得m=,n=4,所以存在定点T(,4),此时·=m2+n2=18.·····························12分 22.(本小题满分12分)解:(1)由f (x)=eax-x,得f ′(x)=aeax-1.·······························1分令f ′(x)=0,得x=-lna.当x<-lna时,f ′(x)<0;当x>-lna时,f ′(x)>0,所以,f (x)的减区间为(-∞,-lna),增区间为(-lna,+∞).···············3分(2)设g (x)=f (x)-(1+ax2)=eax-ax2-x-1, x∈[0,+∞).则g′(x)=aeax-ax-1,g′′(x)=a(aeax-1)=a f ′(x).①当a≥1时,因为x≥0,所以g′′(x)≥a(a-1)≥0,从而g′(x)在[0,+∞)上单调递增.因此g′(x)≥g′(0)=a-1≥0,故g (x)在[0,+∞)上单调递增,所以g (x)≥g (0)=0恒成立,因此a≥1符合题意.···············································7分②当0<a<1时,由(1)知,当x∈(0,-lna)时,g′′(x)=a f ′(x)<0,所以g′(x)单调递减,因此,当x∈(0,-lna)时,g′(x)<g′(0)=a-1<0,所以g (x) 单调递减,故g (-lna)<g (0)=0,与g (x)≥0恒成立矛盾. 因此0<a<1不符合题意.···········································9分③当a=0时,此时g (x)=-x,g (1)=-1<0,与g (x)≥0恒成立矛盾,因此a=0不符合题意.·············································10分④当a<0时,此时g (-)=e-2-1<0,与g (x)≥0恒成立矛盾.因此a<0不符合题意.综上,a≥1.····················································12分
相关试卷
这是一份江苏省南京市2023-2024学年高三上学期9月学情调研数学试卷及参考答案,文件包含3南京市2024届高三年级学情调研数学参考答案pdf、3江苏省南京市2023-2024学年高三上学期9月学情调研数学pdf等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份南京市2024 届高三年级学情调研数学试卷及参考答案,文件包含南京市2024届高三年级学情调研数学试卷pdf、南京市2024届高三年级学情调研数学答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份南京市2024 届高三年级学情调研考试数学试卷及参考答案,文件包含数学试题南京市2024届高三年级学情调研pdf、数学答案南京市2024届高三年级学情调研pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)