陕西省渭南市韩城市新城区第四初级中学 2022-2023学年九年级上学期第一阶段性数学作业(含答案)
展开C(人教版)
2022~2023学年度第一学期第一次阶段性作业
九年级数学
(建议完成时间:120分钟 满分:120分)
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)
1.方程的解是( )
A. B. C. D.
2.已知二次函数,当时,则函数y的值为( )
A.6 B. C.9 D.
3.解一元二次方程,配方得到,则a的值为( )
A.2 B. C.1 D.
4.二次函数的图象可能是下列图象中的( )
A. B. C. D.
5.在平面直角坐标系中,已知抛物线与关于y轴对称,则的值为( )
A.6 B. C. D.
6.已知关于x的一元二次方程的两实数根分别为,则的值为( )
A. B.1 C.5 D.
7.如图,某校在操场东边开发出一块边长分别为18米、11米的矩形菜园,作为劳动教育系列课程的实验基地之一.为了便于管理,现要在中间开辟一纵两横三条等宽的小道,要使种植面积为96平方米.设小道的宽为x米,可列方程为( )
A. B.
C. D.
8.已知二次函数(a为常数,),则该函数图象的顶点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(共5小题,每小题3分,计15分)
9.请写出一个关于二次函数图象或性质的结论________.(写出一条即可)
10.已知是关于x的方程的一个根,则a的值为________.
11.已知二次函数的图象与x轴有两个交点,则a的取值范围是________.
12.点,在二次函数的图象上,若,,则与的大小关系是________(填“>”“<”或“=”).
13.若等腰三角形三边的长分别是a,b,3,且a,b是关于x的一元二次方程的两个根,则满足上述条件的m的值为________.
三、解答题(共13小题,计81分.解答应写出过程)
14.(5分)已知关于x的方程的一个解是,求代数式的值.
15.(5分)已知二次函数,当函数值时,求此时x的值.
16.(5分)已知,是抛物线上不同的两点,且,求m的值.
17.(5分)已知关于x的一元二次方有两个不相等的实数根a,b.若,求k的值.
18.(5分)已知抛物线.
(1)当时,请判断点是否在该抛物线上;
(2)抛物线经过点,求m的值.
19.(5分)已知二次函数的图象如图所示;
(1)写出对称轴是________;
(2)直接写出抛物线与x轴的交点坐标;(横坐标均是整数)
(3)利用图象直接写出当x为何值时,函数值y大于0?
20.(5分)已知二次函数的图象为抛物线C.将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,求出抛物线的解析式以及抛物线与y轴交点纵坐标.
21.(6分)解方程:(1); (2).
22.(7分)已知抛物线经过,和三点.
(1)若该抛物线的顶点恰为点B,求此时n的值,并判断抛物线的开口方向;
(2)当时,确定这个抛物线的解析式,并判断抛物线的开口方向.
23.(7分)关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一个根为1,求m的值和另一个根.
24.(8分)某街心花园的喷水池中心O有一喷水管,从A点向外喷水,喷出的水柱为抛物线.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在y轴上,x轴上的点D为水柱的落水点,水柱所在抛物线的函数解析式为.
(1)求O、D之间的距离;
(2)若在上离O点10m的E处竖立标杆,,且标杆的顶端F刚好碰到水柱,求标杆的高.
25.(8分)随着我国数字化阅读方式的接触率和人群持续增多,数字阅读凭借独有的便利性成为了更快获得优质内容的重要途径,目前,数字阅读已经成为当下更环保、更年轻的阅读方式,2019年某市数字阅读市场规模为400万元,2021年为576万元.
(1)求2019年到2021年该市数字阅读市场规模的年平均增长率;
(2)若年平均增长率不变,预计2022年该市数字阅读市场规模是否可以达到700万元?
26.(10分)如图,抛物线与x轴交于点A和点,与y轴交于点,连接,,点E是对称轴上的一个动点.
(1)求抛物线的解析式;
(2)请在抛物线的对称轴上找一点P,使的周长最小,并求此时点P的坐标;
(3)当时,求点E的坐标.
2022~2023学年度第一学期第一次阶段性作业
九年级数学参考答案及评分标准
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)
1.B 2.D 3.A 4.C 6.B 7.D 8.A
二、填空题(共5小题,每小题3分,计15分)
9.对称轴为(答案不唯一) 10.3 11. 12.> 13.4或3
三、解答题(共13小题,计81分.解答应写出过程)
14.解:∵是方程的解,
∴,·················································································(2分)
∴,
∴原式.··············································································(5分)
15.解:当时,则,·····································································(2分)
解得.
故x的值为1或5.········································································(5分)
16.解:∵,是抛物线上不同的两点,
把代入得,,··········································································(2分)
把代入得,,
∵,
∴,
∴或(舍),
∵.·················································································(5分)
(其他方法正确不扣分,可参照给分)
17.解:∵关于x的一元二次方程有两个实数根a,b.
∴,,,··············································································(2分)
∴.
∵,∴,
∴,·················································································(4分)
∴.·················································································(5分)
18.解:(1)当时,抛物线为,····························································(2分)
将代入得,
∴点不在该抛物线上.···································································(3分)
(2)∵抛物线经过点,
∴,
∴.·················································································(5分)
19.解:(1).········································································(2分)
(2)二次函数的图象与x轴有两个交点,交点坐标为和;·········································(4分)
(3)由图象可得:当时,函数值y大于0.·····················································(5分)
20.解:∵,··········································································(1分)
∵将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,
∴,·················································································(3分)
令代入得,,
∴抛物线与y轴交点的纵坐标为3.···························································(5分)
21.解:(1)
移项得,
因式分解得,··········································································(2分)
,
∴.·················································································(3分)
(2),
,···················································································(4分)
∴,
∴.·················································································(6分)
22.解:(1)∵抛物线的顶点为,
由抛物线的对称性可知,即.······························································(2分)
∴设抛物线的解析式为:,
∵抛物线经过原点,
∴将代入,得:,
解得:,
∴抛物线开口向下.·····································································(4分)
(2)∵,∴
∵抛物线经过,∴,
把,代入,
得:解得··············································································(6分)
∴这个抛物线的解析式为:,
∵,∴抛物线开口向上.··································································(7分)
23.(1)证明:∵.····································································(2分)
,
∴方程总有两个实数根.··································································(4分)
(2)解:把代入方程得:,
解得:,
把代入得:,··········································································(5分)
解得:,
所以另一根为.·········································································(7分)
24.解:(1)时,,
解得:(舍去),,·····································································(3分)
∴点D的坐标为,
∴O、D之间的距离为11m.································································(4分)
(2)由标杆的顶端F刚好碰到水柱且,可知点F在抛物线上,且横坐标为10,
当时,,··············································································(6分)
∴点,
∴.
∴标杆的高为.·········································································(8分)
25.解:(1)设2019年到2021年该市数字阅读市场规模的年平均增长率为x.
根据题意可得,·········································································(3分)
解得(舍),
所以.
∴2019年到2021年该市数字阅读市场规模的年平均增长率为20%.···································(5分)
(2)由题意得:万元.···································································(7分)
∵,
∴预计2022年该市数字阅读市场规模不可以达到700万元.········································(8分)
26.解:(1)∵抛物线经过点,,
解得
∴该抛物线的解析式为.··································································(3分)
(2)∵,∴抛物线对称轴为直线.
点A关于对称轴的对称点是点B,交对称轴直线于点P,点P就是使的周长最小的点.
设直线的解析式为,把点,代入,
得:解得:
∴直线的解析式为.·····································································(5分)
当时,,
∴.·················································································(6分)
(3)∵点A与关于直线对称,
∴,∴,
∴,·················································································(7分)
设,则,
∴,
∵,
∴,·················································································(9分)
解得:或,
∴点E的坐标为或.······································································(10分)
2024年陕西省韩城市新城区第四初级中学中考模拟数学试题(原卷版+解析版): 这是一份2024年陕西省韩城市新城区第四初级中学中考模拟数学试题(原卷版+解析版),文件包含2024年陕西省韩城市新城区第四初级中学中考模拟数学试题原卷版docx、2024年陕西省韩城市新城区第四初级中学中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
2024年陕西省韩城市新城区第四初级中学中考模拟数学试题(原卷版+解析版): 这是一份2024年陕西省韩城市新城区第四初级中学中考模拟数学试题(原卷版+解析版),文件包含2024年陕西省韩城市新城区第四初级中学中考模拟数学试题原卷版docx、2024年陕西省韩城市新城区第四初级中学中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
2024年陕西省韩城市新城区第四初级中学中考模拟数学试题: 这是一份2024年陕西省韩城市新城区第四初级中学中考模拟数学试题,共13页。试卷主要包含了本试卷分为第一部分,如图,点在上,连接,则的长为,已知抛物线,因式分解等内容,欢迎下载使用。