


四川省广安市2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )
A.①②③ B.①②④ C.①③④ D.①②③④
2.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
3.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
4.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
5.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )
A.3m B. m C. m D.4m
6.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是( )
A. B. C. D.
7.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
8.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )
A.12cm B.12cm C.24cm D.24cm
9.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
10.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()
A. B. C. D.
11.下列标志中,可以看作是轴对称图形的是( )
A. B. C. D.
12.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在Rt△ABC中,∠C=90∘,若AB=4,sinA =,则斜边AB边上的高CD的长为________.
14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.
15.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
16.观察下列一组数,,,,,…探究规律,第n个数是_____.
17.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)
18.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算﹣14﹣
20.(6分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.
(1)若M为AC的中点,求CF的长;
(2)随着点M在边AC上取不同的位置,
①△PFM的形状是否发生变化?请说明理由;
②求△PFM的周长的取值范围.
21.(6分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),
B(3,n)两点.求一次函数关系式;根据图象直接写出kx+b﹣>0的x的取值范围;求△AOB的面积.
22.(8分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
23.(8分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);
(2)若这个输水管道有水部分的水面宽AB=8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径.
24.(10分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
①求证:BE′+BF=2,
②求出四边形OE′BF的面积.
25.(10分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.
(1)求教学楼的高度;
(2)求的值.
26.(12分)如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
27.(12分)如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
【详解】
E点有4中情况,分四种情况讨论如下:
由AB∥CD,可得∠AOC=∠DCE1=β
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β-α
过点E2作AB的平行线,由AB∥CD,
可得∠1=∠BAE2=α,∠2=∠DCE2=β
∴∠AE2C=α+β
由AB∥CD,可得∠BOE3=∠DCE3=β
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β
由AB∥CD,可得
∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β
∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.
【点睛】
此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
2、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
3、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
4、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
5、B
【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
【详解】
解:∵sin∠CAB=
∴∠CAB=45°.
∵∠C′AC=15°,
∴∠C′AB′=60°.
∴sin60°=,
解得:B′C′=3.
故选:B.
【点睛】
此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
6、B
【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
【详解】
解,连结OB,
∵、是的切线,
∴,,则,
∵四边形APBO的内角和为360°,即,
∴,
又∵,,
∴,
∵,
∴,
∵,
∴,
故选:B.
【点睛】
本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
7、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
8、D
【解析】
过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
【详解】
如图,过A作AD⊥BF于D,
∵∠ABD=45°,AD=12,
∴=12,
又∵Rt△ABC中,∠C=30°,
∴AC=2AB=24,
故选:D.
【点睛】
本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
9、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
10、B
【解析】
根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
【详解】
解:∵一次函数y=ax+b图像过一、二、四,
∴a<0,b>0,
又∵反比例 函数y=图像经过二、四象限,
∴c<0,
∴二次函数对称轴:>0,
∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
故答案为B.
【点睛】
本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
11、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.
【点睛】
本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
12、D
【解析】
求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.
【详解】
抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,
纵坐标为:y==﹣2a﹣,
∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,
∴抛物线的顶点经过一二三象限,不经过第四象限,
故选:D.
【点睛】
本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
如图,∵在Rt△ABC中,∠C=90∘,AB=4,sinA=,
∴BC=,
∴AC=,
∵CD是AB边上的高,
∴CD=AC·sinA=.
故答案为:.
14、8
【解析】
为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
设第8次射击环数为x环,根据题意列出一元一次不等式
62+x+2×10>89
解之,得
x>7
x表示环数,故x为正整数且x>7,则
x的最小值为8
即第8次至少应打8环.
点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.
15、相离
【解析】
设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
【详解】
设圆O的半径是r,
则πr2=9π,
∴r=3,
∵点0到直线l的距离为π,
∵3<π,
即:r<d,
∴直线l与⊙O的位置关系是相离,
故答案为:相离.
【点睛】
本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
16、
【解析】
根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.
【详解】
解:因为分子的规律是连续的正整数,分母的规律是2n+1,
所以第n个数就应该是:,
故答案为.
【点睛】
此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.
17、100(1+)
【解析】
分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.
详解:如图,
∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,
∴∠A=60°,∠B=45°,
在Rt△ACD中,∵tanA=,
∴AD==100,
在Rt△BCD中,BD=CD=100,
∴AB=AD+BD=100+100=100(1+).
答:A、B两点间的距离为100(1+)米.
故答案为100(1+).
点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
18、.
【解析】
由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.
【详解】
∵A(1,1),
∴OA=,点A在第一象限的角平分线上,
∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
∴∠AOB=45°,
∴的长为=,
故答案为:.
【点睛】
本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】
直接利用绝对值的性质以及二次根式的性质分别化简得出答案.
【详解】
原式=﹣1﹣4÷+27
=﹣1﹣16+27
=1.
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握运算顺序.
20、(1)CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2+2<(1+)y<1+1.
【解析】
(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;
(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;
②设FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周长=(1+)y,由2<y<1,可得结论.
【详解】
(1)∵M为AC的中点,
∴CM=AC=BC=2,
由折叠的性质可知,FB=FM,
设CF=x,则FB=FM=1﹣x,
在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,
解得,x=,即CF=;
(2)①△PFM的形状是等腰直角三角形,不会发生变化,
理由如下:由折叠的性质可知,∠PMF=∠B=15°,
∵CD是中垂线,
∴∠ACD=∠DCF=15°,
∵∠MPC=∠OPM,
∴△POM∽△PMC,
∴=,
∴=,
∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,
∴∠AEM=∠CMF,
∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,
∴∠DPE=∠MFC,∠MPC=∠MFC,
∵∠PCM=∠OCF=15°,
∴△MPC∽△OFC,
∴ ,
∴,
∴,
∵∠POF=∠MOC,
∴△POF∽△MOC,
∴∠PFO=∠MCO=15°,
∴△PFM是等腰直角三角形;
②∵△PFM是等腰直角三角形,设FM=y,
由勾股定理可知:PF=PM=y,
∴△PFM的周长=(1+)y,
∵2<y<1,
∴△PFM的周长满足:2+2<(1+)y<1+1.
【点睛】
本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
21、(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 .
【解析】
试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.
(2)由-2x+1-<0,求出x的取值范围即可.
(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.
试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=(x>0)的图象上,
∴6=,,
解得m=1,n=2,
∴A(1,6),B(2,2),
∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,
∴,
解得,
∴y=-2x+1.
(2)由-2x+1-<0,
解得0<x<1或x>2.
(2)当x=0时,
y=-2×0+1=1,
∴C点的坐标是(0,1);
当y=0时,
0=-2x+1,
解得x=4,
∴D点的坐标是(4,0);
∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.
22、 (1)见解析;(2)1
【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
详解:(1)证明:
∵ CD⊥AB于点D,BE⊥AB于点B,
∴ .
∴ CD∥BE.
又∵ BE=CD,
∴ 四边形CDBE为平行四边形.
又∵,
∴ 四边形CDBE为矩形.
(2)解:∵ 四边形CDBE为矩形,
∴ DE=BC.
∵ 在Rt△ABC中,,CD⊥AB,
可得 .
∵ ,
∴ .
∵ 在Rt△ABC中,,AC=2,,
∴ .
∴ DE=BC=1.
点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
23、(1)详见解析;(2)这个圆形截面的半径是5 cm.
【解析】
(1)根据尺规作图的步骤和方法做出图即可;
(2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.
【详解】
(1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作线段AC的垂直平分线l′与直线l交于点O,点O即为所求作的圆心.
(2)如图,过圆心O作半径CO⊥AB,交AB于点D,
设半径为r,则AD=AB=4,OD=r-2,
在Rt△AOD中,r2=42+(r-2)2,解得r=5,
答:这个圆形截面的半径是5 cm.
【点睛】
此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.
24、 (1);(2)①2,②
【解析】
分析:(1)重合部分是等边三角形,计算出边长即可.
①证明:在图3中,取AB中点E,证明≌,即可得到
,
②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
详解:(1)∵四边形为菱形,
∴
∴为等边三角形
∴
∵AD//
∴
∴为等边三角形,边长
∴重合部分的面积:
①证明:在图3中,取AB中点E,
由上题知,
∴
又∵
∴≌,
∴
∴,
②由①知,在旋转过程60°中始终有≌
∴四边形的面积等于=.
点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
25、(1)12m;(2)
【解析】
(1)利用即可求解;
(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解.
【详解】
解:(1)在中,,
答:教学楼的高度为;
(2)
设,则,
故,
解得:,
则
故.
【点睛】
本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.
26、(1)详见解析;(2)1.
【解析】
(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.
(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.
【详解】
(1)证明:由题意可知:
∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
∴△AOD≌△COE(AAS),
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)解:当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9﹣AO,
∴
可得AO=4,
∴DE=6,AC=8,
∴
【点睛】
考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.
27、解:(1)图见解析;
(2)证明见解析.
【解析】
(1)根据角平分线的作法作出∠ABC的平分线即可.
(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.
【详解】
解:(1)如图所示:
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠EAF.
∵平行四边形ABCD中,AD//BC
∴∠EBF=∠AEB,
∴∠ABE=∠AEB.
∴AB=AE.
∵AO⊥BE,
∴BO=EO.
∵在△ABO和△FBO中,
∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
∴△ABO≌△FBO(ASA).
∴AO=FO.
∵AF⊥BE,BO=EO,AO=FO.
∴四边形ABFE为菱形.
2021-2022学年宁波市鄞州区中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年宁波市鄞州区中考数学考试模拟冲刺卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一组数据,在平面直角坐标系中,已知点A等内容,欢迎下载使用。
2021-2022学年四川省简阳市重点名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年四川省简阳市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,初三,若与 互为相反数,则x的值是,已知某几何体的三视图,若分式有意义,则a的取值范围为等内容,欢迎下载使用。
2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,一组数据,下列计算正确的是等内容,欢迎下载使用。