四川省德阳市德阳中学2021-2022学年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.反比例函数是y=的图象在( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
2.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
3.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
4.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
5.下列图形不是正方体展开图的是( )
A. B.
C. D.
6.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )
A.90° B.120° C.150° D.180°
7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
8.如图,,且.、是上两点,,.若,,,则的长为( )
A. B. C. D.
9.下列计算,结果等于a4的是( )
A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
10.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
11.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )
A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107
12.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.
14.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
15.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.
16.已知a,b为两个连续的整数,且a<<b,则ba=_____.
17.计算:(2018﹣π)0=_____.
18.若一个棱柱有7个面,则它是______棱柱.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.
(1)AB= .
(2)当点N在边BC上时,x= .
(1)求y与x之间的函数关系式.
(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.
20.(6分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
21.(6分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.
22.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.
求证:四边形DECF是菱形.
23.(8分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
24.(10分)解不等式组:,并把解集在数轴上表示出来.
25.(10分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
26.(12分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
27.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
解:∵反比例函数是y=中,k=2>0,
∴此函数图象的两个分支分别位于一、三象限.
故选B.
2、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
3、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
4、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
5、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
6、D
【解析】
试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.
考点:圆锥的计算.
7、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
8、D
【解析】
分析:
详解:如图,
∵AB⊥CD,CE⊥AD,
∴∠1=∠2,
又∵∠3=∠4,
∴180°-∠1-∠4=180°-∠2-∠3,
即∠A=∠C.
∵BF⊥AD,
∴∠CED=∠BFD=90°,
∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,ED=BF=b,
又∵EF=c,
∴AD=a+b-c.
故选:D.
点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
9、C
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A.a+3a=4a,错误;
B.a5和a不是同类项,不能合并,故此选项错误;
C.(a2)2=a4,正确;
D.a8÷a2=a6,错误.
故选C.
【点睛】
本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
10、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
11、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将4670000用科学记数法表示为4.67×106,
故选B.
【点睛】
本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.
12、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
【点睛】
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据同弧或等弧所对的圆周角相等来求解.
【详解】
解:∵∠E=∠ABD,
∴tan∠AED=tan∠ABD==.
故选D.
【点睛】
本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.
14、k>
【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
【详解】
∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
∴△>0,即(2k+1)2-4(k2+1)>0,
解得k>,
故答案为k>.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
15、(3,2).
【解析】
根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
【详解】
解:如图所示:∵A(0,a),
∴点A在y轴上,
∵C,D的坐标分别是(b,m),(c,m),
∴B,E点关于y轴对称,
∵B的坐标是:(﹣3,2),
∴点E的坐标是:(3,2).
故答案为:(3,2).
【点睛】
此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.
16、1
【解析】
根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
【详解】
解:∵a,b为两个连续的整数,且a<<b,
∴a=2,b=3,
∴ba=32=1.
故答案为1.
【点睛】
此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
17、1.
【解析】
根据零指数幂:a0=1(a≠0)可得答案.
【详解】
原式=1,
故答案为:1.
【点睛】
此题主要考查了零次幂,关键是掌握计算公式.
18、5
【解析】
分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.
详解:由题意可知:7-2=5.
故答案为5.
点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.
【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.
【详解】
解:(1)在中,,
故答案为2.
(2)如图1中,
∴四边形PAMN是平行四边形,
当点在上时,,
.
(1)①当时,如图1,
.
②当时,如图2,
y
③当时,如图1,
(4)如图4中,当点是中点时,满足条件
.
如图2中,当点是中点时,满足条件.
.
综上所述,满足条件的x的值为或.
【点睛】
此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.
20、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
21、解:(1)证明见解析;
(2)⊙O的半径是7.5cm.
【解析】
(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
【详解】
(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
则AC=15(cm).
∴⊙O的半径是7.5cm.
考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
22、见解析
【解析】
证明:∵D、E是AB、AC的中点
∴DE=BC,EC=AC
∵D、F是AB、BC的中点
∴DF=AC,FC=BC
∴DE=FC=BC,EC=DF=AC
∵AC=BC
∴DE=EC=FC=DF
∴四边形DECF是菱形
23、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,
方案二总费用为元;②方案一更合算.
【解析】
(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.
【详解】
(1)设文具袋的单价为x元,圆规单价为y元。
由题意得解得
答:文具袋的单价为15元,圆规单价为3元。
(2)①设圆规m个,则方案一总费用为:元
方案二总费用元
故答案为:元;
②买圆规100个时,方案一总费用:元,
方案二总费用:元,
∴方案一更合算。
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
24、无解.
【解析】
试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.
试题解析:由①得x≥4,
由②得x<1,
∴原不等式组无解,
考点:解一元一次不等式;在数轴上表示不等式的解集.
25、(3)证明见解析; (3)AB=3.
【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
【详解】
证明:(3)如图,
∵△ACB与△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,
∵∠ACB=∠ECD=90°,
∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
∴∠BCD=∠ACE,在△BCD和△ACE中,
∵BC=AC,∠BCD=∠ACE,CD=CE,
∴△BCD≌△ACE(SAS);
(3)由(3)知△BCD≌△ACE,
则∠DBC=∠EAC,AE=BD=33,
∵∠CAD+∠DBC=90°,
∴∠EAC+∠CAD=90°,即∠EAD=90°,
∵AE=33,ED=33,
∴AD==5,
∴AB=AD+BD=33+5=3.
【点睛】
本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.
考点:3.全等三角形的判定与性质;3.等腰直角三角形.
26、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
【解析】
(1)根据整式加减法则可求出二次项系数;
(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
【详解】
(1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
(2)A+C=,且A=,C=4,AC=
【点睛】
本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
27、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析: 这是一份四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析,共20页。
四川省德阳市东湖博爱中学2021-2022学年中考数学四模试卷含解析: 这是一份四川省德阳市东湖博爱中学2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax2+bx﹣2,1﹣的相反数是等内容,欢迎下载使用。
四川省德阳市德阳中学2022年中考数学考试模拟冲刺卷含解析: 这是一份四川省德阳市德阳中学2022年中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,以A,2016的相反数是,定义等内容,欢迎下载使用。