安徽省芜湖市无为市实验中学2022-2023学年八年级上学期第一次月考数学试卷(含答案)
展开2022--2023学年度第一学期月考试卷
八 年 级 数 学
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的。
1.若点P的坐标为(-2022,2023),则点P在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
2.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(3,-1),点B的对应点为B′(4,0),则点B的坐标为( )
A.(9,-2) B.(9,2) C.(3,-1) D.(-3,-1)
3.一本笔记本5元,买x本共付y元,则5和x分别是( )
A.常量,变量 B.变量,变量 C.常量,常量 D.变量,常量
4.下列函数:;;;其中是一次函数的有( )
A. 1个 B. 2个 C. 3个 D. 4个
5.将一次函数y=-3x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为( )
A.y=-3(x-4) B.y=-3x+4 C.y=-3(x+4) D.y=-3x-4
6.已知点(-4,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较
7.对于一次函数,下列结论正确的是( )
A.当x>1时,y<0 B.它的图象经过第一、二、三象限
C.它的图象必经过点(-1,3) D.y随x的增大而增大
8.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系,若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则42码鞋子的长度为( )
A. 23cm B. 24cm C. 25cm D. 26cm
9.下列图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是( )
A. B. C. D.
10.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行米,先到终点的人原地休息.已知甲先出发分钟,在整个步行过程中,甲、乙两人之间的距离米与甲出发的时间分之间的关系如图所示,下列结论:乙用分钟追上甲;乙步行的速度为米分;乙到达终点时,甲离终点还有米;整个过程中,甲乙两人相聚米有个时刻,分别是和其中正确的结论有( )个
A. 1 B. 2 C. 3 D. 4
第10题图 第14题图
二、填空题(本大题共4小题,每小题5分,满分20分)
11.若函数是一次函数,则的值为______.
12.在函数中,则自变量x的取值范围是______.
13.已知一次函数y=(-3a+1)x+a的图象经过第一、二、三象限,则a的取值范围是
14.如图所示,以长方形ABCD的边AD的中点为原点建立平面直角坐标系,且AD位于x轴上,AB=CD=2,AD=BC=4,过定点P(0,2)和动点Q(a,0)的直线解析式为y=kx+2.
(1)若PQ经过点D,则k______.
(2)若PQ与长方形ABCD的边有公共点,且函数y随x的增大而增大,则k的取值范围为______.
三、(本大题共2小题,每小题8分,满分16分)
15、巳知点P(2a-1,a+3),根据下列条件,求出点P的坐标。
(1)点P在x轴上; (2)点P到y轴的距离为5。
16、如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,其中B点坐标为(-1,-1).
(1)将△ABC先向上平移2个单位长度,再向右平移3个单位长度,得到△ABC,画出△ABC;
求△ABC的面积.
四、(本大题共2小题,每小题8分,满分16分)
17.已知一次函数的图象经过A(-2,-3),B(1,3)两点.
(1)求该一次函数的表达式;
(2)求该一次函数图象与两坐标轴围成的三角形的面积.
18、若y-4与2x+1成正比例,且当x=-1时,y=6.
(1)试确定y与x之间的函数表达式;
(2)求y=-4时的x的值;
五、(本大题共2小题,每小题10分,满分20分)
19.在如图所示的平面直角坐标系中画出函数的图象,并利用图象解决下列问题:
(1)求方程的解;
(2)求不等式<0的解集;
(3)若-2≤x≤4,求y的取值范围.
20.点P是平面直角坐标系中的一点且不在坐标轴上,过点P向x轴,y轴作垂线段,若垂线段的长度的和为4,则点P叫做“垂距点”,例如:如图中的P(1,3)是“垂距点”.
(1)在点A(2,2),B(,﹣),C(﹣1,5),是“垂距点”的为 ;
(2)若D(m,m)为“垂距点”,求m的值;
六、(本题满分12分)
21.如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.
输人x | … | -6 | -4 | -2 | 0 | 2 | … |
输出y | … | -6 | -2 | 2 | 6 | 16 | … |
根据以上信息,解答下列问题:
(1)当输入的x值为1时,输出的y值为 ;
(2)求k,b的值;
(3)当输出的y值为0时,求输入的x值.
七、(本题满分12分)
22.为落实“双减”政策,丰富课后服务的内容,某学校计划“十一”假期到甲、乙两家草莓采摘园举行采摘草莓的活动,其中甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.两家均推出了优惠方案,甲采摘园的优惠方案:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y甲(元),在乙采摘园所需总费用为y乙(元),图中折线O﹣A﹣B表示y乙与x之间的函数关系.
(1)求y甲、y乙与x之间的函数关系式;
(2)当游客采摘15千克的草莓时,你认为他在哪家草莓园采摘更划算?
八、(本题满分14分)
23、冠状病毒病疫情爆发以来,社会各界高度关注,纷纷伸出援助之手,捐款捐物,某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:
货车类型 | 载重量(吨/辆) | 运往A地的成本(元/辆) | 运往B地的成本(元/辆) |
甲种 | 16 | 1200 | 900 |
乙种 | 12 | 1000 | 750 |
(1)求甲、乙两种货车各用了多少辆;
(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.
①写出w与t之间的函数解析式;
②当t为何值时,w最小?最小值是多少?
一、选择题
1.B 2.A 3.A 4.C 5.D 6.A 7.A 8.D 9.C 10.B
二、填空题
11、-1 12、且 13、 0<a<; 14、(1) ;(2).k≥1.
三、(本大题共2小题,每小题8分,满分16分)
15、(1)点P(2a-1,a+3)在x轴上,∴a+3=0,解得a=-3;
故2a-1=-6-1=-7,则P(-7,0);
(2)∵点P到y轴的距离为5,∴|2a-1|=5,2a-1=-5或2a-1=5,解得a=-2或a=3,
∴a+3=-2+3=1或a+3=3+3=6; ∴点P的坐标为( -5, 1)或(5, 6).
16.解:如图,为所作;
的面积.
四、(本大题共2小题,每小题8分,满分16分)
17.(1)y=2x+1 (4)
18.(1)∵y-4与2x+1成正比例,∴设y-4=k(2x+ 1)(k是常数,k≠0),
又当x=-1时,y=6.
∴6-4=k(-2+1),解得k=-2,∴y-4=- 2(2x+ 1),
∴y= -4x+2;
(2)当y=-4时,-4=-4x+2,解得x=
五、(本大题共2小题,每小题10分,满分20分)
19、 (1)如图,x=2;
(2)x<2;
(3)-3≤y≤6;
20.解:(1)根据题意,对于点A而言,|2|+|2|=4,
A是“垂距点”,
对于点B而言,||+|﹣|=4,
B是“垂距点”,
对于点C而言,|﹣1|+|5|=6≠4,
所以C不是“垂距点”,
故答案为A和B.
(2)根据题意得|m|+||=4
①当m>0时,则2m=4,解得m=2,
②当m<0时,则﹣2m=4,解得m=﹣2,
故m的值为±2.
六、(本题满分12分)
21.(1)8
(2)解:将(-2,2),(0,6)代入,得, 解得;
(3)解:令,
由,得,∴.(舍去)
由,得,∴.
∴输出的y值为0时,输入的x值为.
七、(本题满分12分)
22.(1)根据题意得,甲、乙两采摘园优惠前的草莓销售价格:300÷10=30(元/千克).
∴y甲=30×0.6x+60=18x+60;
当0<x≤10时,y乙=30x;
当x>10时,设y乙=kx+b,
由题意的:, 解得,
∴y乙=12x+180,
∴y乙与x之间的函数关系式为:y乙=
(2)当x=15时,y甲=18×15+60=330,
y乙=12×15+180=360,
∴y甲<y乙,
∴他在甲家草莓园采摘更划算.
八、(本题满分14分)
23.解:(1)设甲种货车用了x辆,则乙种货车用了(24﹣x)辆,
根据题意得:16x+12(24﹣x)=328,
解得x=10,
∴24﹣x=24﹣10=14,
答:甲种货车用了10辆,乙种货车用了14辆;
(2)①根据题意得:
w=1200t+1000(12﹣t)+900(10﹣t)+750[14﹣(12﹣t)]=50t+22500
∴w与t之间的函数解析式是w=50t+22500;
②∵,
∴0≤t≤10,
∵前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,
∴16t+12(12﹣t)≥160,
解得t≥4,
∴4≤t≤10,
在w=50t+22500中,
∵50>0,
∴w随t的增大而增大,
∴t=4时,w取最小值,最小值是50×4+22500=22700(元),
答:当t为4时,w最小,最小值是22700元.
2023-2024学年安徽省芜湖市无为市八年级(上)期末数学试卷-普通用卷: 这是一份2023-2024学年安徽省芜湖市无为市八年级(上)期末数学试卷-普通用卷,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年安徽省芜湖市无为市八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年安徽省芜湖市无为市八年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2022-2023学年安徽省芜湖市无为市八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年安徽省芜湖市无为市八年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。