![陕西省西安市东城一中学2021-2022学年中考四模数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13565642/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省西安市东城一中学2021-2022学年中考四模数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13565642/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省西安市东城一中学2021-2022学年中考四模数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13565642/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
陕西省西安市东城一中学2021-2022学年中考四模数学试题含解析
展开
这是一份陕西省西安市东城一中学2021-2022学年中考四模数学试题含解析,共20页。试卷主要包含了化简的结果为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.一个数和它的倒数相等,则这个数是( )
A.1 B.0 C.±1 D.±1和0
2.下列说法正确的是( )
A.负数没有倒数 B.﹣1的倒数是﹣1
C.任何有理数都有倒数 D.正数的倒数比自身小
3.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A. B. C. D.
4.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
5.化简的结果为( )
A.﹣1 B.1 C. D.
6.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是( )
A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
7.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )
A.76° B.74° C.72° D.70°
8.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )
A. B.
C. D.
9.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )
A.-2 B.2 C.-4 D.4
10.=( )
A.±4 B.4 C.±2 D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.
12.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
13.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
14.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
15.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
16.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值÷(x﹣),其中x=.
18.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
19.(8分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.
(1)证明:DE是⊙O的切线;
(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
(3)若⊙O的半径r=5,sinA=,求线段EF的长.
20.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
21.(8分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)
(1)当y=0时,求x的值.
(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.
22.(10分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
23.(12分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
24.如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
2、B
【解析】
根据倒数的定义解答即可.
【详解】
A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
【点睛】
本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
3、C
【解析】
过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
【详解】
过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
∵⊙O的周长等于6πcm,
∴2πr=6π,
解得:r=3,
∴⊙O的半径为3cm,即OA=3cm,
∵六边形ABCDEF是正六边形,
∴∠AOB=×360°=60°,OA=OB,
∴△OAB是等边三角形,
∴AB=OA=3cm,
∵OH⊥AB,
∴AH=AB,
∴AB=OA=3cm,
∴AH=cm,OH==cm,
∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).
故选C.
【点睛】
此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
4、A
【解析】
∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
解得b≥.
当抛物线与x轴的交点的横坐标均大于等于0时,
设抛物线与x轴的交点的横坐标分别为x1,x2,
则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
∴此种情况不存在.
∴b≥.
5、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
6、C
【解析】
首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
【详解】
∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
∴1=﹣,
解得:x=﹣3,
∴P(﹣3,1),
故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.
7、B
【解析】
直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
【详解】
解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故选:B.
【点睛】
此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
8、B
【解析】
试题解析:∵转盘被等分成6个扇形区域,
而黄色区域占其中的一个,
∴指针指向黄色区域的概率=.
故选A.
考点:几何概率.
9、C
【解析】
根据反比例函数k的几何意义,求出k的值即可解决问题
【详解】
解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
∴||=2,
∵k<0,
∴k=-1.
故选:C.
【点睛】
本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
10、B
【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.
【详解】
解:,
故选B.
【点睛】
本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
考点:不等式的性质
点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
12、5.2
【解析】
分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
∴方差为:.
点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
13、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
14、﹣18
【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
【详解】
a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
=ab(a﹣b)2,
当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
故答案为:﹣18.
【点睛】
本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
15、3cm.
【解析】
根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
【详解】
解:∵四边形ABCD是矩形,AC=6cm
∴OA=OC=OB=OD=3cm,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=3cm,
故答案为:3cm
【点睛】
本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
16、1
【解析】
根据已知DE∥BC得出=进而得出BC的值
【详解】
∵DE∥BC,AD=6,BD=2,DE=3,
∴△ADE∽△ABC,
∴,
∴,
∴BC=1,
故答案为1.
【点睛】
此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.
三、解答题(共8题,共72分)
17、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
18、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
19、(1)见解析 (2)8(3)
【解析】
分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
(3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
详解:(1)如图,连接BD、OD,
∵AB是⊙O的直径,
∴∠BDA=90°,
∵BA=BC,
∴AD=CD,
又∵AO=OB,
∴OD∥BC,
∵DE⊥BC,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)设⊙O的半径为x,则OB=OD=x,
在Rt△ODE中,OE=4+x,∠E=30°,
∴,
解得:x=4,
∴DE=4,S△ODE=×4×4=8,
S扇形ODB=,
则S阴影=S△ODE-S扇形ODB=8-;
(3)在Rt△ABD中,BD=ABsinA=10×=2,
∵DE⊥BC,
∴Rt△DFB∽Rt△DCB,
∴,即,
∴BF=2,
∵OD∥BC,
∴△EFB∽△EDO,
∴,即,
∴EB=,
∴EF=.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
20、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
21、(1),;(2)
【解析】
(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.
(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cot∠MCB.
【详解】
(1)把代入函数解析式得,
即,
解得:,.
(2)把代入得,即得,
∵二次函数,与轴的交点为,∴点坐标为.
设直线的解析式为,代入,得解得,
∴,
∴点坐标为,
在中,又∵
∴.
【点睛】
本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.
22、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;
(2)根据题意运用t表示出PQ即可;
(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
(3)根据等腰三角形的性质即可得出结论.
【详解】
解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
∴PQ=PR,∠QPR=90°,
∴△QPR为等腰直角三角形.
当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
∵点R与点B重合,
∴AP+PR=t+t=AB=3,
解得:t=.
(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
∵tanA=,
∴tanC=,sinC=,
∴PQ=CP•sinC=(9﹣t).
(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.
∵△KBR∽△QAR,
∴ =,
∴ =,
∴KM=(t﹣3)=t﹣,
∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
②如图2中,当3<t≤3时,重叠部分是四边形PQKB.
S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
③如图3中,当3<t<9时,重叠部分是△PQK.
S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
(3)如图3中,
①当DC=DP1=3时,易知AP1=3,t=3.
②当DC=DP2时,CP2=2•CD•,
∴BP2=,
∴t=3+.
③当CD=CP3时,t=4.
④当CP3=DP3时,CP3=2÷,
∴t=9﹣=.
综上所述,满足条件的t的值为3或或4或.
【点睛】
本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
23、见解析.
【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
∴ab+b1+ab=ab+c1+a(b-a),
∴a1+b1=c1.
【点睛】
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
24、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
相关试卷
这是一份2024年陕西省西安市雁塔区曲江一中中考数学四模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022届陕西省西安市信德中学中考数学五模试卷含解析,共21页。试卷主要包含了下列运算正确的是,如果一次函数y=kx+b等内容,欢迎下载使用。
这是一份2021-2022学年陕西省西安市西北工大附中中考数学最后一模试卷含解析,共25页。试卷主要包含了一元二次方程的根的情况是,若一个正比例函数的图象经过A等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)