山东省潍坊市峡山经济开发区2022年中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次 B.能中奖两次
C.至少能中奖一次 D.中奖次数不能确定
2.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
A.9 B.10 C.12 D.14
3.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是( )
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
4.下列方程中,没有实数根的是( )
A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
5.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )
A.a<0,b<0,c>0
B.﹣=1
C.a+b+c<0
D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
6.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
8.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是( )
A.﹣ B. C. D.
9.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种 B.2种 C.3种 D.4种
10.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
二、填空题(本大题共6个小题,每小题3分,共18分)
11.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
12.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
13.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.
14.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
15.不等式组有2个整数解,则m的取值范围是_____.
16.已知x1,x2是方程x2-3x-1=0的两根,则=______.
三、解答题(共8题,共72分)
17.(8分)化简(),并说明原代数式的值能否等于-1.
18.(8分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)
19.(8分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
20.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
21.(8分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
| A | B |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.8 | 1.4 |
该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.
(1)该公司计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?
22.(10分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)
23.(12分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
24.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【详解】
解:根据随机事件的定义判定,中奖次数不能确定
故选D.
【点睛】
解答此题要明确概率和事件的关系:
,为不可能事件;
为必然事件;
为随机事件.
2、A
【解析】
利用平行四边形的性质即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=3,OD=OB==2,OA=OC=4,
∴△OBC的周长=3+2+4=9,
故选:A.
【点睛】
题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
3、A
【解析】
结合向左平移的法则,即可得到答案.
【详解】
解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
故选A.
【点睛】
此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.
4、D
【解析】
分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
【详解】
A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
故选D.
5、D
【解析】
试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
6、B
【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
【详解】
设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
故选B.
【点睛】
本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
7、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:将0.0000000076用科学计数法表示为.
故选A.
【点睛】
本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
8、C
【解析】
根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.
【详解】
按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,
可得第n个数为,
∴当时,这个数为,
故选:C.
【点睛】
本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.
9、B
【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
【详解】
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,
y=7-x,
∵x、y都是正整数,
∴x=5时,y=4;
x=10时,y=1;
∴购买方案有2种.
故选B.
【点睛】
本题主要考查二元一次方程的应用,关键在于根据题意列方程.
10、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
12、8
【解析】
【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
【详解】∵四边形ACDF是正方形,
∴AC=FA,∠CAF=90°,
∴∠CAE+∠FAB=90°,
∵∠CEA=90°,∴∠CAE+∠ACE=90°,
∴∠ACE=∠FAB,
又∵∠AEC=∠FBA=90°,
∴△AEC≌△FBA,
∴CE=AB=4,
∴S阴影==8,
故答案为8.
【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
13、.
【解析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.
【详解】
解:设乙车的速度是x千米/小时,则根据题意,
可列方程:.
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
14、
【解析】
因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
15、1<m≤2
【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
【详解】
不等式组有个整数解,
其整数解有、这个,
.
故答案为:.
【点睛】
此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
16、﹣1.
【解析】
试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
三、解答题(共8题,共72分)
17、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
18、见解析
【解析】
三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.
【详解】
作∠CDP=∠BCD,PD与AC的交点即P.
【点睛】
本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.
19、
【解析】
先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
【详解】
解:原式
【点睛】
考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
20、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
21、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套.
【解析】
(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论.
【详解】
解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,
根据题意得:
解得:.
答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套.
(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,
根据题意得:1.5(20﹣m)+1.2(30+1.5m)≤18,
解得:m≤,
∵m为整数,
∴m≤1.
答:A种品牌的教学设备购进数量至多减少1套.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.
22、详见解析
【解析】
先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
【详解】
如图
作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
【点睛】
本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
23、(1)见解析;(2)见解析.
【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】
证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
24、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
【详解】
(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
∵CA=CE,CB=CF,∴AE=BF.
∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
【点睛】
本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
2024年山东省潍坊市寿光市中考数学三模试卷(含解析): 这是一份2024年山东省潍坊市寿光市中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
2023-2024学年山东省潍坊市峡山经济开发区数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年山东省潍坊市峡山经济开发区数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。
山东省潍坊市峡山经济开发区2023-2024学年数学八上期末质量跟踪监视试题含答案: 这是一份山东省潍坊市峡山经济开发区2023-2024学年数学八上期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下面的图形中对称轴最多的是,如图,直线与的图像交于点等内容,欢迎下载使用。