山东省曲阜市石门山镇中学2022年中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A. B. C. D.
2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )
A. B. C. D.
3.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )
A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
4.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )
A. B. C. D.
5.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
6.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
A.①② B.①③ C.①③④ D.②③④
7.下列计算正确的是( )
A.x2x3=x6 B.(m+3)2=m2+9
C.a10÷a5=a5 D.(xy2)3=xy6
8.二次函数y=-x2-4x+5的最大值是( )
A.-7 B.5 C.0 D.9
9.下列命题中,错误的是( )
A.三角形的两边之和大于第三边
B.三角形的外角和等于360°
C.等边三角形既是轴对称图形,又是中心对称图形
D.三角形的一条中线能将三角形分成面积相等的两部分
10.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
11.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
12.不等式4-2x>0的解集在数轴上表示为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在中,::1:2:3,于点D,若,则______
14.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
15.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.
16.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.
17.若m+=3,则m2+=_____.
18.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
20.(6分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
21.(6分)列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
22.(8分)解方程
(1);(2)
23.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.
24.(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
25.(10分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
求反比例函数的表达式和一次函数表达式;
若点C是y轴上一点,且,直接写出点C的坐标.
26.(12分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
27.(12分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.
[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
考点:用科学计数法计数
2、A
【解析】
由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
故选A.
点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
∵3804.2千=3804200,
∴3804200=3.8042×106;
故选:C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、D
【解析】
分析:根据主视图和俯视图之间的关系可以得出答案.
详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
5、C
【解析】
【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率=,
故选C.
【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
6、B
【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
【详解】
解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
故选:B.
【点睛】
本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
7、C
【解析】
根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
【详解】
x2•x3=x5,故选项A不合题意;
(m+3)2=m2+6m+9,故选项B不合题意;
a10÷a5=a5,故选项C符合题意;
(xy2)3=x3y6,故选项D不合题意.
故选:C.
【点睛】
本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
8、D
【解析】
直接利用配方法得出二次函数的顶点式进而得出答案.
【详解】
y=﹣x2﹣4x+5=﹣(x+2)2+9,
即二次函数y=﹣x2﹣4x+5的最大值是9,
故选D.
【点睛】
此题主要考查了二次函数的最值,正确配方是解题关键.
9、C
【解析】
根据三角形的性质即可作出判断.
【详解】
解:A、正确,符合三角形三边关系;
B、正确;三角形外角和定理;
C、错误,等边三角形既是轴对称图形,不是中心对称图形;
D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
故选:C.
【点睛】
本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
10、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
11、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
12、D
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
14、2:1
【解析】
先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
故答案为2:1.
点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
15、50
【解析】
根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC
【详解】
∵BC是直径,∠D=40°,
∴∠B=∠D=40°,∠BAC=90°.
∵OA=OB,
∴∠BAO=∠B=40°,
∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.
故答案为:50
【点睛】
本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键
16、-2
根据图象可直接得到y1>y2>0时x的取值范围.
【详解】
根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
故答案为﹣2<x<﹣0.5.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
17、7
【解析】
分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
详解:把m+=3两边平方得:(m+)2=m2++2=9,
则m2+=7,
故答案为:7
点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
18、1
【解析】
由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
【详解】
解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
∴△=2,
∴b2﹣4ac=22﹣4×1×m=2;
∴m=1.
故答案为1.
【点睛】
本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) ; (2)方程有两个不相等的实根.
【解析】
分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;
(2)计算方程根的判别式,判断判别式的符号即可.
详解:
(1)∵m是方程的一个实数根,
∴m2-(2m-3)m+m2+1=1,
∴m=−;
(2)△=b2-4ac=-12m+5,
∵m<1,
∴-12m>1.
∴△=-12m+5>1.
∴此方程有两个不相等的实数根.
点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
20、30.3米.
【解析】
试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
试题解析:过点D作DE⊥AB于点E,
在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
∴AB=AE+BE≈23.1+7.2=30.3米.
21、15
【解析】
试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
试题解析:
解:设骑车学生的速度为,由题意得
,
解得 .
经检验是原方程的解.
答: 骑车学生的速度为15.
22、(1),;(2),.
【解析】
(1)利用公式法求解可得;
(2)利用因式分解法求解可得.
【详解】
(1)解:∵,,,
∴,
∴,
∴,;
(2)解:原方程化为:,
因式分解得:,
整理得:,
∴或,
∴,.
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
23、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
【解析】
(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣;
把点B(6,n)代入,可得n=﹣1,
∴B(6,﹣1).
把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
解得,
∴一次函数的解析式为y=﹣x+2;
(2)∵y=﹣x+2,令y=0,则x=4,
∴C(4,0),即OC=4,
∴△AOB的面积=×4×(3+1)=8;
(3)∵反比例函数y=﹣的图象位于二、四象限,
∴在每个象限内,y随x的增大而增大,
∵x1<x2,y1<y2,
∴M,N在相同的象限,
∴点M、N在第二象限,或点M、N在第四象限.
【点睛】
本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.
24、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
25、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
【详解】
(1)∵双曲线过,将代入,解得:.
∴所求反比例函数表达式为:.
∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
(2)由,可得:,∴.
又∵,∴或,∴,或,.
【点睛】
本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
26、 (1);(2).
【解析】
(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
【详解】
(1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
∴P(牌面是偶数)==;
故答案为:;
(2)根据题意,画树状图:
可知,共有种等可能的结果,其中恰好是的倍数的共有种,
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
27、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
【解析】
(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
当底边PQ与它的中线AE相等,即AE=PQ时,
==,
∴=;
当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
(3)作QN⊥AP于N,可得tan∠APQ===,
tan∠APE===,
∴=,
【详解】
解:[理解]∵AC和BD是“对应边”,
∴AC=BD,
设AC=2x,则CD=x,BD=2x,
∵∠C=90°,
∴BC===x,
∴tanA===;
[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
∵PC=QC,∠ACB=∠ACD,
∴AC是QP的垂直平分线,
∴AP=AQ,
∵∠CAB=∠ACP,∠AEF=∠CEP,
∴△AEF∽△CEP,
∴===,
∵PE=CE,
∴=,
分两种情况:
当底边PQ与它的中线AE相等,即AE=PQ时,
==,
∴=;
当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
如图3,作QN⊥AP于N,
∴MN=AN=PM=QM,
∴QN=MN,
∴ntan∠APQ===,
∴ta∠APE===,
∴=,
综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
2022年山东省青岛市崂山区部分中学中考考前最后一卷数学试卷含解析: 这是一份2022年山东省青岛市崂山区部分中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了cs30°的值为,下列计算正确的是,不等式组的解集为,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
2022年山东省临沂中考考前最后一卷数学试卷含解析: 这是一份2022年山东省临沂中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了计算 的结果为,tan30°的值为等内容,欢迎下载使用。
2022届山东省曲阜市石门山镇中学中考联考数学试卷含解析: 这是一份2022届山东省曲阜市石门山镇中学中考联考数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,估计-1的值在等内容,欢迎下载使用。