


山东省青岛39中2021-2022学年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )
A.1 B.2 C.3 D.4
2.﹣的相反数是( )
A.8 B.﹣8 C. D.﹣
3.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
A.70° B.65° C.62° D.60°
4.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是( )
A.(1,4) B.(4,3) C.(2,4) D.(4,1)
5.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
6.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
A.= B.= C.= D.=
7.若|a|=﹣a,则a为( )
A.a是负数 B.a是正数 C.a=0 D.负数或零
8.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:
x
-1
0
1
3
y
3
3
下列结论:
(1)abc<0
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0
(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
9.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )
A.11; B.6; C.3; D.1.
10.下列运算正确的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
12.不等式-2x+3>0的解集是___________________
13.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
14.计算:(3+1)(3﹣1)= .
15.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
16.计算:(π﹣3)0+(﹣)﹣1=_____.
三、解答题(共8题,共72分)
17.(8分)下面是“作三角形一边上的高”的尺规作图过程.
已知:△ABC.
求作:△ABC的边BC上的高AD.
作法:如图2,
(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;
(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.
请回答:该尺规作图的依据是______.
18.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
19.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.
20.(8分)计算:.
21.(8分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?
22.(10分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.
23.(12分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结BO,求△AOB的面积;
(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 .
24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是 度.若AB=8cm,△MBC的周长是14cm.
①求BC的长度;
②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
详解:121
∴对121只需进行3次操作后变为1.
故选C.
点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.
2、C
【解析】
互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,
故选C.
3、A
【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
【详解】
∵AB∥CD,∠C=35°,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=70°,
∵AB∥CD,
∴∠BED=∠ABE=70°.
故选:A.
【点睛】
本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
4、D
【解析】
先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
【详解】
由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
【点睛】
本题主要考察规律的探索,注意观察规律是解题的关键.
5、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
6、D
【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
【详解】
解:当或时,,
即或.
所以D选项是正确的.
【点睛】
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
7、D
【解析】
根据绝对值的性质解答.
【详解】
解:当a≤0时,|a|=-a,
∴|a|=-a时,a为负数或零,
故选D.
【点睛】
本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
8、B
【解析】
(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;
(2)求得对称轴,即可判定此结论错误;
(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.
【详解】
(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,
∴,
解得
∴abc<0,故正确;
(2)∵y=-x2+x+3,
∴对称轴为直线x=-=,
所以,当x>时,y的值随x值的增大而减小,故错误;
(3)∵对称轴为直线x=,
∴当x=4和x=-1时对应的函数值相同,
∴16a+4b+c<0,故正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,
∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;
综上所述,结论正确的是(1)(3)(4).
故选:B.
【点睛】
本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.
9、D
【解析】
∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,
∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,
∴上述四个数中,只有D选项中的1符合要求.
故选D.
点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.
10、D
【解析】
根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
【详解】
解:A、B两项不是同类项,所以不能合并,故A、B错误,
C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
【点睛】
本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
【详解】
解:∵CD⊥AB,AB=16,
∴AD=DB=8,
在Rt△OAD中,AB=16m,半径OA=10m,
∴OD==6,
∴CD=OC﹣OD=10﹣6=1(m).
故答案为1.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
12、x<
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-3,
系数化为1,得:x<,
故答案为x<.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
13、1
【解析】
根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
【详解】
∵a、b是方程x2-2x-1=0的两个根,
∴a2-2a=1,a+b=2,
∴a2-a+b=a2-2a+(a+b)=1+2=1.
故答案为1.
【点睛】
本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
14、1.
【解析】
根据平方差公式计算即可.
【详解】
原式=(3)2-12
=18-1
=1
故答案为1.
【点睛】
本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.
15、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
16、-1
【解析】
先计算0指数幂和负指数幂,再相减.
【详解】
(π﹣3)0+(﹣)﹣1,
=1﹣3,
=﹣1,
故答案是:﹣1.
【点睛】
考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
三、解答题(共8题,共72分)
17、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线
【解析】
利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高
【详解】
解:由作法得BC垂直平分AE,
所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
【点睛】
此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.
18、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
【解析】
(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
由题意,得 ,
解得x=1500,
经检验,x=1500是原分式方程的解,
乙种品牌空调的进价为(1+20%)×1500=1800(元).
答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
由题意,得1500a+1800(10-a)≤16000,
解得 ≤a,
设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
因为-700<0,
则w随a的增大而减少,
当a=7时,w最大,最大为12100元.
答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
【点睛】
本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
19、(1)a=2,k=8(2) =1.
【解析】
分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
∴a=﹣=2,
∴A(﹣1,2),
过A作AE⊥x轴于E,BF⊥⊥x轴于F,
∴AE=2,OE=1,
∵AB∥x轴,
∴BF=2,
∵∠AOB=90°,
∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
∴∠EAO=∠BOF,
∴△AEO∽△OFB,
∴,
∴OF=4,
∴B(4,2),
∴k=4×2=8;
(2)∵直线OA过A(﹣1,2),
∴直线AO的解析式为y=﹣2x,
∵MN∥OA,
∴设直线MN的解析式为y=﹣2x+b,
∴2=﹣2×4+b,
∴b=10,
∴直线MN的解析式为y=﹣2x+10,
∵直线MN交x轴于点M,交y轴于点N,
∴M(5,0),N(0,10),
解得,,
∴C(1,8),
∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.
点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.
20、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
21、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
【解析】
(1)将函数解析式配方成顶点式可得最值;
(1)画图象可得t的取值.
【详解】
(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
∴当t=1时,h取得最大值10米;
答:小球飞行时间是1s时,小球最高为10m;
(1)如图,
由题意得:15=10t﹣5t1,
解得:t1=1,t1=3,
由图象得:当1≤t≤3时,h≥15,
则小球飞行时间1≤t≤3时,飞行高度不低于15m.
【点睛】
本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
22、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;
(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.
试题解析:(1)∵CG2=GE•GD,∴.
又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.
∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.
(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.
又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE•CG=EG•CB.
考点:相似三角形的判定与性质.
23、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;
【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.
【详解】
解:
(1)过A作AM⊥x轴于M,
则AM=1,OA=,由勾股定理得:OM=1,
即A的坐标是(1,1),
把A的坐标代入y=得:k=1,
即反比例函数的解析式是y=.
把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
即B的坐标是(﹣2,﹣),
把A、B的坐标代入y=ax+b得:,
解得:k=.b=﹣,
即一次函数的解析式是y=x﹣.
(2)连接OB,
∵y=x﹣,
∴当x=0时,y=﹣,
即OD=,
∴△AOB的面积是S△BOD+S△AOD=××2+××1=.
(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,
故答案为﹣2<x<0或x>1.
【点睛】
本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.
24、(1)50;(2)①6;②1
【解析】
试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
②当点P与M重合时,△PBC周长的值最小,于是得到结论.
试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.
2023年山东省青岛市市北区中考数学模拟试卷(含解析): 这是一份2023年山东省青岛市市北区中考数学模拟试卷(含解析),共30页。试卷主要包含了 下列实数中,是有理数的是,131131113…, 计算等内容,欢迎下载使用。
山东省济南市2021-2022学年中考数学模拟试题含解析: 这是一份山东省济南市2021-2022学年中考数学模拟试题含解析,共19页。
山东省青岛市市北区2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省青岛市市北区2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。