山东省安丘市重点名校2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的倒数的绝对值是( )
A. B. C. D.
2.如图所示的几何体,上下部分均为圆柱体,其左视图是( )
A. B. C. D.
3.函数y=ax2与y=﹣ax+b的图象可能是( )
A. B.
C. D.
4.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
5.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
6.下列计算正确的是( )
A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣6
7.计算的结果是( ).
A. B. C. D.
8.如图所示是放置在正方形网格中的一个 ,则的值为( )
A. B. C. D.
9.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件
B.明天下雪的概率为,表示明天有半天都在下雪
C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.了解一批充电宝的使用寿命,适合用普查的方式
10.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米
12.不等式组的解集是__________.
13.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
14.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_____.
15.使分式的值为0,这时x=_____.
16.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
17.在数轴上,点A和点B分别表示数a和b,且在原点的两侧,若=2016,AO=2BO,则a+b=_____
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.
19.(5分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是( )
A.7 B.8 C.14 D.16
20.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
21.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
22.(10分)如图,点,在上,直线是的切线,.连接交于.
(1)求证:
(2)若,的半径为,求的长.
23.(12分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“关联点”有_____;
(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
24.(14分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
直接利用倒数的定义结合绝对值的性质分析得出答案.
【详解】
解:−的倒数为−,则−的绝对值是:.
故答案选:D.
【点睛】
本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.
2、C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
3、B
【解析】
选项中,由图可知:在,;在,,∴,所以A错误;
选项中,由图可知:在,;在,,∴,所以B正确;
选项中,由图可知:在,;在,,∴,所以C错误;
选项中,由图可知:在,;在,,∴,所以D错误.
故选B.
点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.
4、C
【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
【详解】
解:∵a∥b,
∴∠1=∠BAC=40°,
又∵∠ABC=90°,
∴∠2=90°−40°=50°,
故选C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
5、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、C
【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
【详解】
=3,故选项A不合题意;
﹣32=﹣9,故选项B不合题意;
(﹣3)﹣2=,故选项C符合题意;
﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
故选C.
【点睛】
本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
7、D
【解析】
根据同底数幂的乘除法运算进行计算.
【详解】
3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.
【点睛】
本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.
8、D
【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
【详解】
解:过点A向CB引垂线,与CB交于D,
△ABD是直角三角形,
∵BD=4,AD=2,
∴tan∠ABC=
故选:D.
【点睛】
此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
9、C
【解析】
根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.
【详解】
A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;
B. “明天下雪的概率为”,表示明天有可能下雪,错误;
C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;
D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;
故选:C
【点睛】
考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.
10、A
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
是直线y=8与抛物线两交点的横坐标差的绝对值.
故有,
即,,.
所以两盏警示灯之间的水平距离为:
12、x≥1
【解析】
分析:分别求出两个不等式的解,从而得出不等式组的解集.
详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
13、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
14、1
【解析】
设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.
【详解】
解:设HG=x.
∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,则矩形EFGH的面积=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,则矩形EFGH的面积最大值为1.
故答案为1.
【点睛】
本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
15、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
16、15π
【解析】
根据圆的面积公式、扇形的面积公式计算即可.
【详解】
圆锥的母线长==5,,
圆锥底面圆的面积=9π
圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
∴圆锥的侧面展开图的面积=×6π×5=15π,
【点睛】
本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.
17、-672或672
【解析】
∵ ,∴a-b=±2016,
∵AO=2BO,A和点B分别在原点的两侧
∴a=-2b.
当a-b=2016时,∴-2b-b=2016,
解得:b=-672.
∴a=−2×(-672)=1342,
∴a+b=1344+(-672)=672.同理可得当a-b=-2016时,a+b=-672, ∴a+b=±672,
故答案为:−672或672.
三、解答题(共7小题,满分69分)
18、(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)
【解析】
(1)按要求作图.
(2)由(1)得出坐标.
(3)由图观察得到,再根据勾股定理得到长度.
【详解】
解:(1)画出△A1OB1,如图.
(2)点A1(0,1),点B1(﹣2,2).
(3)OB1=OB==2.
【点睛】
本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.
19、C
【解析】
根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.
【详解】
解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.
故选C.
【点睛】
本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.
20、 (1)2000;(2)2米
【解析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:﹣= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x=(不合题意,舍去).
答:人行道的宽为2米.
21、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
22、(1)证明见解析;(2)1.
【解析】
(1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
【详解】
(1)如图,连接,
∵切于,
∴,
∴
又∵,
∴在中:
∵,
∴,
∴,
又∵,
∴,
∴;
(2)∵在中:, ,
由勾股定理得:,
由(1)得:,
∴.
【点睛】
此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
23、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
【详解】
(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),
观察图象可知:正方形ABCD的“关联点”为P2,P3;
(2)作正方形ABCD的内切圆和外接圆,
∴OF=1,,.
∵E是正方形ABCD的“关联点”,
∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
∵点E在直线上,
∴点E在线段FG上.
分别作FF’⊥x轴,GG’⊥x轴,
∵OF=1,,
∴,.
∴.
根据对称性,可以得出.
∴或.
(3)∵、N(0,1),
∴,ON=1.
∴∠OMN=60°.
∵线段MN上的每一个点都是正方形ABCD
的“关联点”,
①MN与小⊙Q相切于点F,如图3中,
∵QF=1,∠OMN=60°,
∴.
∵,
∴.
∴.
②M落在大⊙Q上,如图4中,
∵,,
∴.
∴.
综上:.
【点睛】
本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
24、,当x=1时,原式=﹣1.
【解析】
先化简分式,然后将x的值代入计算即可.
【详解】
解:原式=
= .
且,
∴x的整数有,
∴取,
当时,
原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析: 这是一份山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是等内容,欢迎下载使用。
山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析: 这是一份山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了当函数y=等内容,欢迎下载使用。
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。