终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    辽宁省本溪市2022年中考五模数学试题含解析

    立即下载
    加入资料篮
    辽宁省本溪市2022年中考五模数学试题含解析第1页
    辽宁省本溪市2022年中考五模数学试题含解析第2页
    辽宁省本溪市2022年中考五模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省本溪市2022年中考五模数学试题含解析

    展开

    这是一份辽宁省本溪市2022年中考五模数学试题含解析,共20页。试卷主要包含了下列计算正确的是,下列各运算中,计算正确的是,的负倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()

    A.30° B.40°
    C.60° D.70°
    2.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    3.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是(  )

    A.点A落在BC边的中点 B.∠B+∠1+∠C=180°
    C.△DBA是等腰三角形 D.DE∥BC
    4.据调查,某班20为女同学所穿鞋子的尺码如表所示,
    尺码(码)
    34
    35
    36
    37
    38
    人数
    2
    5
    10
    2
    1
    则鞋子尺码的众数和中位数分别是( )
    A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
    5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是(  )

    A. B.
    C. D.
    6.下列计算正确的是(  )
    A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
    C.2x2÷3x2=x2 D.2x2•3x2=6x4
    7.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是  
    A. B. C. D.
    8.下列各运算中,计算正确的是(  )
    A.a12÷a3=a4 B.(3a2)3=9a6
    C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2
    9.的负倒数是(  )
    A. B.- C.3 D.﹣3
    10.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    11.已知二次函数的图象如图所示,则下列说法正确的是( )

    A.<0 B.<0 C.<0 D.<0
    12.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )

    A.3对 B.4对 C.5对 D.6对
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
    14.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.

    15.竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h=﹣2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第____秒时离地面最高.
    16.已知x1,x2是方程x2-3x-1=0的两根,则=______.
    17.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
    18.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?
    指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.
    通过这段对话,请你求出该地驻军原来每天清理道路的米数.
    20.(6分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
    (1)实践操作:尺规作图,不写作法,保留作图痕迹.
    ①作∠ABC的角平分线交AC于点D.
    ②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
    (2)推理计算:四边形BFDE的面积为   .

    21.(6分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.

    22.(8分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.

    (1)求证:AC是☉O的切线;
    (2)连接EF,当∠D= °时,四边形FOBE是菱形.
    23.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
    24.(10分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
    (问题引入)(1)如图1,若点P为AC的中点,求的值.
    温馨提示:过点C作CE∥AO交BD于点E.
    (探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
    (问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.

    25.(10分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.

    对雾霾了解程度的统计表
    对雾霾的了解程度
    百分比
    A.非常了解
    5%
    B.比较了解
    m
    C.基本了解
    45%
    D.不了解
    n
    请结合统计图表,回答下列问题:统计表中:m=   ,n=   ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
    26.(12分)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.
    27.(12分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程有一个根的平方等于4,求m的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    ∵AB∥CD,∠A=70°,
    ∴∠1=∠A=70°,
    ∵∠1=∠C+∠E,∠C=40°,
    ∴∠E=∠1﹣∠C=70°﹣40°=30°.
    故选A.
    2、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    3、A
    【解析】
    根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.
    【详解】
    根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.
    【点睛】
    主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.
    (1)三角形的外角等于与它不相邻的两个内角和.
    (1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.
    4、D
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    数据36出现了10次,次数最多,所以众数为36,
    一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
    故选D.
    【点睛】
    考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
    5、B
    【解析】
    根据相似三角形的判定方法一一判断即可.
    【详解】
    解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
    故选:B.
    【点睛】
    本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    6、D
    【解析】
    先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
    【详解】
    A、2x2+3x2=5x2,不符合题意;
    B、2x2﹣3x2=﹣x2,不符合题意;
    C、2x2÷3x2=,不符合题意;
    D、2x23x2=6x4,符合题意,
    故选:D.
    【点睛】
    本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
    7、B
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
    【详解】
    解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
    B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
    C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
    D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
    故选:B.
    【点睛】
    本题重点考查三视图的定义以及考查学生的空间想象能力.
    8、D
    【解析】
    【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
    【详解】A、原式=a9,故A选项错误,不符合题意;
    B、原式=27a6,故B选项错误,不符合题意;
    C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
    D、原式=6a2,故D选项正确,符合题意,
    故选D.
    【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
    9、D
    【解析】
    根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.
    【详解】
    根据倒数的定义得:2×=1.
    因此的负倒数是-2.
    故选D.
    【点睛】
    本题考查了倒数,解题的关键是掌握倒数的概念.
    10、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    11、B
    【解析】
    根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
    【详解】
    解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线交于y轴的正半轴,
    ∴c>0,
    ∴ac>0,A错误;
    ∵->0,a>0,
    ∴b<0,∴B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2-4ac>0,C错误;
    当x=1时,y>0,
    ∴a+b+c>0,D错误;
    故选B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    12、D
    【解析】
    根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
    【详解】
    图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
    △OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
    【点睛】
    此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a≥﹣1且a≠1
    【解析】
    利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
    【详解】
    根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
    故答案为a≥﹣1且a≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
    14、2
    【解析】
    解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,

    ∵AB=AC,点E为BD的中点,且AD=AB,
    ∴设BE=DE=x,则AD=AF=1x.
    ∵DG⊥AC,EF⊥AC,
    ∴DG∥EF,∴,即,解得.
    ∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
    又∵DF∥BC,∴∠DFG=∠C,
    ∴Rt△DFG∽Rt△ACH,∴,即,解得.
    在Rt△ABH中,由勾股定理,得.
    ∴.
    又∵△ADF∽△ABC,∴,

    ∴.
    故答案为:2.
    15、.
    【解析】
    首先根据题意得出m的值,进而求出t=﹣的值即可求得答案.
    【详解】
    ∵竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h=﹣2t2+mt+,小球经过秒落地,
    ∴t=时,h=0,
    则0=﹣2×()2+m+,
    解得:m=,
    当t=﹣=﹣时,h最大,
    故答案为:.
    【点睛】
    本题考查了二次函数的应用,正确得出m的值是解题关键.
    16、﹣1.
    【解析】
    试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
    17、20π
    【解析】
    利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
    【详解】
    底面直径为8,底面半径=4,底面周长=8π,
    由勾股定理得,母线长==5,
    故圆锥的侧面积=×8π×5=20π,
    故答案为:20π.
    【点睛】
    本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
    18、26°
    【解析】
    根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.
    【详解】
    由圆周角定理得:∠AOP=2∠C=64°.
    ∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.
    故答案为:26°.
    【点睛】
    本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1米.
    【解析】
    试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.
    试题解析:解:设原来每天清理道路x米,根据题意得:

    解得,x=1.
    检验:当x=1时,2x≠0,∴x=1是原方程的解.
    答:该地驻军原来每天清理道路1米.
    点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根.
    20、 (1)详见解析;(2).
    【解析】
    (1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
    (2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
    【详解】
    (1)如图,DE、DF为所作;

    (2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
    ∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
    ∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
    ∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
    故答案为:8.
    【点睛】
    本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    21、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
    【解析】
    (1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
    (2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
    【详解】
    (1)解:设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)作PD⊥AO交AC于D

    设AC解析式y=kx+b

    解得:
    ∴AC解析式为y=x+4.
    设P(t,﹣t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当t=﹣2时,△ACP最大面积4.
    【点睛】
    本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
    22、(1)详见解析;(2)30.
    【解析】
    (1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;
    (2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.
    【详解】
    (1)证明:∵CD与⊙O相切于点E,
    ∴OE⊥CD,
    ∴∠CEO=90°,
    又∵OC∥BE,
    ∴∠COE=∠OEB,∠OBE=∠COA
    ∵OE=OB,
    ∴∠OEB=∠OBE,
    ∴∠COE=∠COA,
    又∵OC=OC,OA=OE,
    ∴△OCA≌△OCE(SAS),
    ∴∠CAO=∠CEO=90°,
    又∵AB为⊙O的直径,
    ∴AC为⊙O的切线;
    (2)∵四边形FOBE是菱形,
    ∴OF=OB=BF=EF,
    ∴OE=OB=BE,
    ∴△OBE为等边三角形,
    ∴∠BOE=60°,
    而OE⊥CD,
    ∴∠D=30°.
    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    23、(1)1(2)10%.
    【解析】
    试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;
    (2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.
    试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得

    解得x=1.
    经检验,x=1是原方程的根.
    答:每张门票的原定票价为1元;
    (2)设平均每次降价的百分率为y,根据题意得
    1(1-y)2=324,
    解得:y1=0.1,y2=1.9(不合题意,舍去).
    答:平均每次降价10%.
    考点:1.一元二次方程的应用;2.分式方程的应用.
    24、(1);(2) 见解析;(3)
    【解析】
    (1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
    【详解】
    (1)如图1,过点C作CE∥OA交BD于点E,

    ∴△BCE∽△BOD,
    ∴=,
    又BC=BO,∴CE=DO.
    ∵CE∥OA,∴∠ECP=∠DAP,
    又∠EPC=∠DPA,PA=PC,
    ∴△ECP≌△DAP,
    ∴AD=CE=DO,
    即 =;
    (2)如图2,过点D作DF∥BO交AC于点F,

    则 =, =.
    ∵点C为OB的中点,
    ∴BC=OC,
    ∴=;
    (3)如图2,∵=,
    由(2)可知==.
    设AD=t,则BO=AO=4t,OD=3t,
    ∵AO⊥BO,即∠AOB=90°,
    ∴BD==5t,
    ∴PD=t,PB=4t,
    ∴PD=AD,
    ∴∠A=∠APD=∠BPC,
    则tan∠BPC=tan∠A==.
    【点睛】
    本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.
    25、(1)20;15%;35%;(2)见解析;(3)126°.
    【解析】
    (1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
    (2)求出D的学生人数,然后补全统计图即可;
    (3)用D的百分比乘360°计算即可得解.
    【详解】
    解:(1)非常了解的人数为20,
    60÷400×100%=15%,
    1﹣5%﹣15%﹣45%=35%,
    故答案为20;15%;35%;
    (2)∵D等级的人数为:400×35%=140,
    ∴补全条形统计图如图所示:

    (3)D部分扇形所对应的圆心角:360°×35%=126°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
    26、x+1,2.
    【解析】
    先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.
    【详解】
    原式=x2+x﹣(x2﹣1)
    =x2+x﹣x2+1
    =x+1,
    当x=1时,原式=2.
    【点睛】
    本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.
    27、(1)证明见解析;(2)m 的值为1或﹣2.
    【解析】
    (1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
    【详解】
    (1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
    ∴无论实数 m 取何值,方程总有两个实数根;
    (2)解:∵方程有一个根的平方等于 2,
    ∴x=±2 是原方程的根,
    当 x=2 时,2﹣2(m+3)+m+2=1.
    解得m=1;
    当 x=﹣2 时,2+2(m+3)+m+2=1,
    解得m=﹣2.
    综上所述,m 的值为 1 或﹣2.
    【点睛】
    本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.

    相关试卷

    2023年辽宁省本溪市中考数学模拟试卷(含解析):

    这是一份2023年辽宁省本溪市中考数学模拟试卷(含解析),共31页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析:

    这是一份辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列事件中,属于不确定事件的是等内容,欢迎下载使用。

    2022届辽宁省本溪市中考二模数学试题含解析:

    这是一份2022届辽宁省本溪市中考二模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map