|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析01
    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析02
    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析

    展开
    这是一份辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析,共22页。试卷主要包含了分式方程的解为,下列命题是真命题的是,某一公司共有51名员工,下列各式计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是(  )
    A.抛物线开口向下
    B.抛物线与x轴的交点为(﹣1,0),(3,0)
    C.当x=1时,y有最大值为0
    D.抛物线的对称轴是直线x=
    2.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    3.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )

    A. B. C. D.
    4.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

    A. B. C. D.
    5.分式方程的解为( )
    A.x=-2 B.x=-3 C.x=2 D.x=3
    6.下列命题是真命题的是(  )
    A.如果a+b=0,那么a=b=0 B.的平方根是±4
    C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
    7.如图中任意画一个点,落在黑色区域的概率是(  )

    A. B. C.π D.50
    8.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
    A.平均数和中位数不变 B.平均数增加,中位数不变
    C.平均数不变,中位数增加 D.平均数和中位数都增大
    9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    10.下列各式计算正确的是( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知x+y=8,xy=2,则x2y+xy2=_____.
    12.因式分解:4ax2﹣4ay2=_____.
    13.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.

    14.已知图中的两个三角形全等,则∠1等于____________.

    15.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
    16.已知二次函数中,函数y与x的部分对应值如下:

    ...
    -1
    0
    1
    2
    3
    ...

    ...
    10
    5
    2
    1
    2
    ...
    则当时,x的取值范围是_________.
    17.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
    (1)求抛物线的解析式;
    (2)猜想△EDB的形状并加以证明;
    (3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

    19.(5分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.

    20.(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。
    (1)求二次函数的表达式;
    (2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;
    (3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.

    21.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.

    (1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
    ②抛物线与的“完美三角形”的斜边长的数量关系是 ;
    (2)若抛物线的“完美三角形”的斜边长为4,求a的值;
    (3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
    22.(10分)已知反比例函数的图象过点A(3,2).
    (1)试求该反比例函数的表达式;
    (2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

    23.(12分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

    24.(14分)如图1,在长方形ABCD中,,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
    (1)求出a值;
    (2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
    (3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    A、由a=1>0,可得出抛物线开口向上,A选项错误;
    B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、由抛物线开口向上,可得出y无最大值,C选项错误;
    D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
    综上即可得出结论.
    【详解】
    解:A、∵a=1>0,
    ∴抛物线开口向上,A选项错误;
    B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
    ∴c=1,
    ∴抛物线的解析式为y=x1-3x+1.
    当y=0时,有x1-3x+1=0,
    解得:x1=1,x1=1,
    ∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、∵抛物线开口向上,
    ∴y无最大值,C选项错误;
    D、∵抛物线的解析式为y=x1-3x+1,
    ∴抛物线的对称轴为直线x=-=-=,D选项正确.
    故选D.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
    2、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.
    3、C
    【解析】
    过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
    【详解】
    过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
    ∵⊙O的周长等于6πcm,
    ∴2πr=6π,
    解得:r=3,
    ∴⊙O的半径为3cm,即OA=3cm,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=×360°=60°,OA=OB,
    ∴△OAB是等边三角形,
    ∴AB=OA=3cm,
    ∵OH⊥AB,
    ∴AH=AB,
    ∴AB=OA=3cm,
    ∴AH=cm,OH==cm,
    ∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).

    故选C.
    【点睛】
    此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
    4、B
    【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】分三种情况:
    ①当P在AB边上时,如图1,
    设菱形的高为h,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x的增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选B.

    【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
    5、B
    【解析】
    解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.
    6、D
    【解析】
    解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
    B、=4的平方根是±2,错误,为假命题;
    C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
    D、等腰三角形两底角相等,正确,为真命题;
    故选D.
    7、B
    【解析】
    抓住黑白面积相等,根据概率公式可求出概率.
    【详解】
    因为,黑白区域面积相等,
    所以,点落在黑色区域的概率是.
    故选B
    【点睛】
    本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
    8、B
    【解析】
    本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    【详解】
    解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然

    由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
    故选B.
    【点睛】
    本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
    9、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    10、C
    【解析】
    解:A.2a与2不是同类项,不能合并,故本选项错误;
    B.应为,故本选项错误;
    C.,正确;
    D.应为,故本选项错误.
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;同底数幂的乘法.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
    【详解】
    ∵x+y=8,xy=2,
    ∴x2y+xy2=xy(x+y)=2×8=1.
    故答案为:1.
    【点睛】
    本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
    12、4a(x﹣y)(x+y)
    【解析】
    首先提取公因式4a,再利用平方差公式分解因式即可.
    【详解】
    4ax2-4ay2=4a(x2-y2)
    =4a(x-y)(x+y).
    故答案为4a(x-y)(x+y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    13、25
    【解析】
    ∵AC是⊙O的切线,
    ∴∠OAC=90°,
    ∵∠C=40°,
    ∴∠AOC=50°,
    ∵OB=OD,
    ∴∠ABD=∠BDO,
    ∵∠ABD+∠BDO=∠AOC,
    ∴∠ABD=25°,
    故答案为:25.
    14、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    15、0.50
    【解析】
    直接使用科学计算器计算即可,结果需保留二位有效数字.
    【详解】
    用科学计算器计算得0.5,
    故填0.50,
    【点睛】
    此题主要考查科学计算器的使用,注意结果保留二位有效数字.
    16、0 【解析】
    根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
    【详解】
    由表可知,二次函数的对称轴为直线x=2,
    所以,x=4时,y=5,
    所以,y<5时,x的取值范围为0 故答案为0 【点睛】
    此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
    17、
    【解析】
    解:如图,作OH⊥DK于H,连接OK,

    ∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
    ∴根据折叠对称的性质,A'D=2CD.
    ∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
    ∴∠DOK=120°.
    ∴扇形ODK的面积为.
    ∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
    ∴△ODK的面积为.
    ∴半圆还露在外面的部分(阴影部分)的面积是:.
    故答案为:.

    三、解答题(共7小题,满分69分)
    18、(1)y=﹣x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(,2)或(,﹣2).
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
    (3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
    【详解】
    解:(1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,
    ∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;
    (2)△EDB为等腰直角三角形.
    证明:
    由(1)可知B(4,3),且D(3,0),E(0,1),
    ∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
    ∴DE2+BD2=BE2,且DE=BD,
    ∴△EDB为等腰直角三角形;
    (3)存在.理由如下:
    设直线BE解析式为y=kx+b,
    把B、E坐标代入可得,解得,
    ∴直线BE解析式为y=x+1,
    当x=2时,y=2,
    ∴F(2,2),
    ①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
    ∴点M的纵坐标为2或﹣2,
    在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∴x=,
    ∴M点坐标为(,2);
    在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∴x=,
    ∴M点坐标为(,﹣2);
    ②当AF为平行四边形的对角线时,
    ∵A(4,0),F(2,2),
    ∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
    设M(t,﹣t2+3t),N(x,0),
    则﹣t2+3t=2,解得t=,
    ∵点M在抛物线对称轴右侧,
    ∴x>2,
    ∵t>2,
    ∴t=,
    ∴M点坐标为(,2);
    综上可知存在满足条件的点M,其坐标为(,2)或(,﹣2).
    【点睛】
    本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.
    19、证明见解析
    【解析】
    根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
    【详解】
    ∵EA⊥AB,EC⊥BC,
    ∴∠EAB=∠ECB=90°,
    在Rt△EAB与Rt△ECB中

    ∴Rt△EAB≌Rt△ECB,
    ∴AB=CB,∠ABE=∠CBE,
    ∵BD=BD,
    在△ABD与△CBD中

    ∴△ABD≌△CBD,
    ∴AD=CD.
    【点睛】
    本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
    20、 (1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.
    【解析】
    (1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q′,根据m>n结合图像即可得到x0的取值范围.
    【详解】
    (1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,
    因此,二次函数的表达式为:y=x2-2x-3;
    (2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0).
    当y=kx+b(k≠0)经过(3,0)时,3k+b=0;
    当y=kx+b(k≠0)经过(-1,0)时,k=b.
    (3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,
    对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),
    若点P(x0,m)使得m>n,结合图象可以得出x0<2或x0>1.
    【点睛】
    本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.
    21、(1)AB=2;相等;(2)a=±;(3), .
    【解析】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
    (2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
    (3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
    【详解】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
    易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
    ∴,(舍去),∴抛物线的“完美三角形”的斜边
    ②相等;

    (2)∵抛物线与抛物线的形状相同,
    ∴抛物线与抛物线的“完美三角形”全等,
    ∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
    ∴B点坐标为(2,2)或(2,-2),∴.
    (3)∵ 的最大值为-1,
    ∴ ,
    ∴ ,
    ∵抛物线的“完美三角形”斜边长为n,
    ∴抛物线的“完美三角形”斜边长为n,
    ∴B点坐标为,
    ∴代入抛物线,得,
    ∴ (不合题意舍去),
    ∴,

    22、(1);(2)MB=MD.
    【解析】
    (1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
    (2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
    【详解】
    (1)将A(3,2)代入中,得2,∴k=6,
    ∴反比例函数的表达式为.
    (2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
    ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
    即OC·OB=12,
    ∵OC=3,∴OB=4,即n=4,∴,
    ∴MB=,MD=,∴MB=MD.
    【点睛】
    本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
    23、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
    24、(1)6;(2);;(3)10或;
    【解析】
    (1)根据图象变化确定a秒时,P点位置,利用面积求a;
    (2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
    (3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
    【详解】
    (1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.

    ∴AP=6,
    则a=6;
    (2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
    ∵Q点路程总长为34cm,第6秒时已经走12cm,
    故点Q还剩的路程为y2=34﹣12﹣;
    (3)当P、Q两点相遇前相距3cm时,
    ﹣(2x﹣6)=3,解得x=10,
    当P、Q两点相遇后相距3cm时,
    (2x﹣6)﹣()=3,解得x=,
    ∴当x=10或时,P、Q两点相距3cm
    【点睛】
    本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.

    相关试卷

    2023年辽宁省大连市中山区中考数学一模试卷(含解析): 这是一份2023年辽宁省大连市中山区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省大连市2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份辽宁省大连市2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了答题时请按要求用笔,方程的解是等内容,欢迎下载使用。

    2022年浙江省杭州市萧山区中考冲刺卷数学试题含解析: 这是一份2022年浙江省杭州市萧山区中考冲刺卷数学试题含解析,共21页。试卷主要包含了图为小明和小红两人的解题过程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map