


江苏省盐城市大丰东台2022年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )
A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3
3.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
5.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )
A.甲 B.乙 C.甲乙同样稳定 D.无法确定
6.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
A. B. C. D.
7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )
A. B.
C. D.
8.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
9.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )
A.10 B.11 C.12 D.13
10.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.
12.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.
13.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)
14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
15.化简:=_____.
16.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.
17.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
三、解答题(共7小题,满分69分)
18.(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.
请你根据图中信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;
(2)补全条形统计图;
(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.
19.(5分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
20.(8分)解方程
(1)x1﹣1x﹣1=0
(1)(x+1)1=4(x﹣1)1.
21.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
22.(10分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.
23.(12分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
24.(14分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
求证:BF=AG.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
2、C
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,
0.00005=,
故选C.
3、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、C
【解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
5、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S甲2=1.4,S乙2=2.5,
∴S甲2<S乙2,
∴甲、乙两名同学成绩更稳定的是甲;
故选A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.
【详解】
A.不是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项正确;
C.不是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项错误.
故选B.
7、B
【解析】
试题解析:∵转盘被等分成6个扇形区域,
而黄色区域占其中的一个,
∴指针指向黄色区域的概率=.
故选A.
考点:几何概率.
8、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
9、B
【解析】
根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.
【详解】
由统计图可得,
本班学生有:6+9+10+8+7=40(人),
该班这些学生一周锻炼时间的中位数是:11,
故选B.
【点睛】
本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.
10、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形.故错误;
B.不是轴对称图形,也不是中心对称图形.故错误;
C.是轴对称图形,也是中心对称图形.故正确;
D.不是轴对称图形,是中心对称图形.故错误.
故选C.
【点睛】
掌握好中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
中心对称图形是要寻找对称中心,旋转180°后与原图重合.
二、填空题(共7小题,每小题3分,满分21分)
11、1.
【解析】
寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
∴第10个图形有112-1=1个小五角星.
12、(4,6),(8﹣2,6),(2,6).
【解析】
分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
【详解】
解:当M为顶点时,AB长为底=8,M在DC中点上,
所以M的坐标为(4, 6),
当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
所以M的坐标为(8﹣2,6);
当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
所以M的坐标为(2,6);
综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
故答案为:(4,6),(8﹣2,6),(2,6).
【点睛】
本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
13、>
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
14、2
【解析】
试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
∴C△EBF==C△HAE=2.
考点:1折叠问题;2勾股定理;1相似三角形.
15、-6
【解析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
【详解】
,
故答案为-6
16、1
【解析】
设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.
【详解】
解:设正多边形的边数为n,
由题意得,=144°,
解得n=1.
故答案为1.
【点睛】
本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.
17、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
三、解答题(共7小题,满分69分)
18、(1)126;(2)作图见解析(3)768
【解析】
试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;
(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;
(3)用部分估计整体.
试题解析:(1)126°
(2)40÷40%-2-16-18-32=32人
(3)1200×=768人
考点:统计图
19、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
20、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
【解析】
(1)配方法解;
(1)因式分解法解.
【详解】
(1)x1﹣1x﹣1=2,
x1﹣1x+1=1+1,
(x﹣1)1=3,
x﹣1= ,
x=1,
x1=1,x1=1﹣,
(1)(x+1)1=4(x﹣1)1.
(x+1)1﹣4(x﹣1)1=2.
(x+1)1﹣[1(x﹣1)]1=2.
(x+1)1﹣(1x﹣1)1=2.
(x+1﹣1x+1)(x+1+1x﹣1)=2.
(﹣x+3)(3x﹣1)=2.
x1=3,x1=.
【点睛】
考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
21、不公平
【解析】
【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
【详解】根据题意列表如下:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
∴P(甲获胜)=,P(乙获胜)=1﹣=,
则该游戏不公平.
【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
22、 (1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-
【解析】
【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;
(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;
(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P ,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).
【详解】(1)抛物线的解析式为y= (x-4)(x+2)=x2-x-4.
(2)连接OM,设点M的坐标为.
由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.
S四边形OAMC=S△OAM+S△OCM
=× 4m+× 4
=-m2+4m+8=-(m-2)2+12.
当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).
(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).
连接CC1,过C1作C1D⊥AC于D,则CC1=2.
∵OA=OC,∠AOC=90°,∠CDC1=90°,
∴AC=4,CD=C1D=,AD=4-=3,
设点P ,过P作PQ垂直于x轴,垂足为Q.
∵∠PAB=∠CAC1,∠AQP=∠ADC1,
∴△PAQ∽△C1AD,
∴,
即 ,化简得 =(8-2n),
即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),
解得n=-,或n=-,或n=4(舍去),
∴点P的横坐标为-或-.
【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.
23、(1)①﹣3;②;(2);(3)
【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
【详解】
(1)①∵点在直线上,
∴,
∴点的“理想值”=-3,
故答案为:﹣3.
②当点在与轴切点时,点的“理想值”最小为0.
当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
设点Q(x,y),与x轴切于A,与OQ切于Q,
∵C(,1),
∴tan∠COA==,
∴∠COA=30°,
∵OQ、OA是的切线,
∴∠QOA=2∠COA=60°,
∴=tan∠QOA=tan60°=,
∴点的“理想值”为,
故答案为:.
(2)设直线与轴、轴的交点分别为点,点,
当x=0时,y=3,
当y=0时,x+3=0,解得:x=,
∴,.
∴,,
∴tan∠OAB=,
∴.
∵,
∴①如图,作直线.
当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
作轴于点,
∴,
∴.
∵的半径为1,
∴.
∴,
∴.
∴.
②如图
当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
作轴于点,则.
设直线与直线的交点为.
∵直线中,k=,
∴,
∴,点F与Q重合,
则.
∵的半径为1,
∴.
∴.
∴,
∴.
∴.
由①②可得,的取值范围是.
(3)∵M(2,m),
∴M点在直线x=2上,
∵,
∴LQ取最大值时,=,
∴作直线y=x,与x=2交于点N,
当M与ON和x轴同时相切时,半径r最大,
根据题意作图如下:M与ON相切于Q,与x轴相切于E,
把x=2代入y=x得:y=4,
∴NE=4,OE=2,ON==6,
∴∠MQN=∠NEO=90°,
又∵∠ONE=∠MNQ,
∴,
∴,即,
解得:r=.
∴最大半径为.
【点睛】
本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.
24、见解析
【解析】
根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
【详解】
证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
又∵∠BAC=90°,AE⊥CD,
∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
∴∠BAF=∠ACG. 又∵AB=CA,
∴
∴△ABF≌△CAG(ASA),
∴BF=AG
【点睛】
此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
江苏省盐城市东台市三仓镇区中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省盐城市东台市三仓镇区中学2022年初中数学毕业考试模拟冲刺卷含解析
江苏省盐城市大丰东台重点名校2022年中考数学模拟预测试卷含解析: 这是一份江苏省盐城市大丰东台重点名校2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了下列计算结果等于0的是,不等式组的解在数轴上表示为等内容,欢迎下载使用。
江苏省盐城市大丰东台重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份江苏省盐城市大丰东台重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,对于一组统计数据等内容,欢迎下载使用。