终身会员
搜索
    上传资料 赚现金

    江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析第1页
    江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析第2页
    江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析

    展开

    这是一份江苏省无锡市南长实验、侨谊教育集团2021-2022学年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )

    A. B. C. D.
    2.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )
    A.﹣=10 B.﹣=10
    C.﹣=10 D. +=10
    3.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为(  )

    A. B. C.π D.
    4.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是  

    A. B. C. D.
    5.=(  )
    A.±4 B.4 C.±2 D.2
    6.下列运算正确的是(  )
    A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
    C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
    7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是(  )

    A.右转80° B.左转80° C.右转100° D.左转100°
    8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
    A.20 B.30 C.40 D.50
    9.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
    A. B. C. D.
    10.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为(  )

    A. B. C.2 D.2
    11.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是( )

    A.∠AOD=∠BOC B.∠AOE+∠BOD=90°
    C.∠AOC=∠AOE D.∠AOD+∠BOD=180°
    12.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.

    14.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)
    15.一个扇形的面积是πcm,半径是3cm,则此扇形的弧长是_____.
    16.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.

    17.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 ▲ .
    18.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
    (1)求抛物线的解析式;
    (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
    (3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

    20.(6分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.

    (1)若C是半径OB中点,求的正弦值;
    (2)若E是弧AB的中点,求证:;
    (3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
    21.(6分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.

    22.(8分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
    了解得到以下信息(如表):
    工程队
    每天修路的长度(米)
    单独完成所需天数(天)
    每天所需费用(元)
    甲队
    30
    n
    600
    乙队
    m
    n﹣14
    1160
    (1)甲队单独完成这项工程所需天数n=  ,乙队每天修路的长度m=  (米);
    (2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
    ①当x=90时,求出乙队修路的天数;
    ②求y与x之间的函数关系式(不用写出x的取值范围);
    ③若总费用不超过22800元,求甲队至少先修了多少米.
    23.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
    24.(10分)列方程解应用题:
    为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
    信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
    信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
    根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
    25.(10分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
    (1)求抛物线的函数表达式;
    (2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
    (3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
    (4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.

    26.(12分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
    地铁站
    A
    B
    C
    D
    E
    X(千米)
    8
    9
    10
    11.5
    13
    (分钟)
    18
    20
    22
    25
    28
    (1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
    27.(12分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
    【详解】
    过C点作CD⊥AB,垂足为D.

    根据旋转性质可知,∠B′=∠B.
    在Rt△BCD中,tanB=,
    ∴tanB′=tanB=.
    故选D.
    【点睛】
    本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
    2、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    3、A
    【解析】
    试题分析:连接OB,OC,

    ∵AB为圆O的切线,
    ∴∠ABO=90°,
    在Rt△ABO中,OA=,∠A=30°,
    ∴OB=,∠AOB=60°,
    ∵BC∥OA,
    ∴∠OBC=∠AOB=60°,
    又OB=OC,
    ∴△BOC为等边三角形,
    ∴∠BOC=60°,
    则劣弧长为.
    故选A.
    考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
    4、B
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    添加,根据AAS能证明≌,故A选项不符合题意.
    B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;
    C.添加,可得,根据AAS能证明≌,故C选项不符合题意;
    D.添加,可得,根据AAS能证明≌,故D选项不符合题意,
    故选B.
    【点睛】
    本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    5、B
    【解析】
    表示16的算术平方根,为正数,再根据二次根式的性质化简.
    【详解】
    解:,
    故选B.
    【点睛】
    本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
    6、B
    【解析】
    先根据同底数幂的乘法法则进行运算即可。
    【详解】
    A.;故本选项错误;
    B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
    C.;故本选项错误;
    D. 不是同类项不能合并; 故本选项错误;
    故选B.
    【点睛】
    先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
    7、A
    【解析】
    60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
    故选A.
    8、A
    【解析】
    分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
    详解:根据题意得: , 
    计算得出:n=20, 
    故选A.
    点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    9、A
    【解析】
    根据轴对称图形的概念求解.
    解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
    故选A.
    “点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    10、D
    【解析】
    【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
    【详解】过A作AD⊥BC于D,

    ∵△ABC是等边三角形,
    ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
    ∵AD⊥BC,
    ∴BD=CD=1,AD=BD=,
    ∴△ABC的面积为BC•AD==,
    S扇形BAC==,
    ∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
    故选D.
    【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
    11、C
    【解析】
    根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.
    【详解】
    A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;
    B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;
    C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;
    D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;
    故选C.
    【点睛】
    本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.
    12、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(2,2).
    【解析】
    连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
    【详解】
    如图,连结OA,
    OA==5,
    ∵B为⊙O内一点,
    ∴符合要求的点B的坐标(2,2)答案不唯一.
    故答案为:(2,2).

    【点睛】
    考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
    14、y=x2等
    【解析】
    分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.
    详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.
    故解析式满足a>1,c=1即可,如y=x2.
    故答案为y=x2(答案不唯一).
    点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.
    15、
    【解析】
    根据扇形面积公式求解即可
    【详解】
    根据扇形面积公式.
    可得:,

    故答案:.
    【点睛】
    本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.
    16、.
    【解析】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;
    【详解】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,

    作A1M⊥FA交FA的延长线于M,
    在Rt△AMA1中,∵∠MAA1=60°,
    ∴∠MA1A=30°,
    ∴AM=AA1=a,
    ∴MA1=AA1·cos30°=a,FM=5a,
    在Rt△A1FM中,FA1=,
    ∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,
    ∴△F1FL∽△A1FA,
    ∴,
    ∴,
    ∴FL=a,F1L=a,
    根据对称性可知:GA1=F1L=a,
    ∴GL=2a﹣a=a,
    ∴S六边形GHIJKI:S六边形ABCDEF=()2=,
    故答案为:.
    【点睛】
    本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.
    17、k<且k≠1.
    【解析】
    根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:
    ∵有两个不相等的实数根,
    ∴△=1-4k>1,且k≠1,解得,k<且k≠1.
    18、8
    【解析】
    试题分析:设红球有x个,根据概率公式可得,解得:x=8.
    考点:概率.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().
    【解析】
    试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
    (2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
    (3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
    试题解析:
    (1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)
    ∴将A与B两点坐标代入得:,解得:,
    ∴抛物线的解析式是y=x2﹣3x.
    (2)设直线OB的解析式为y=k1x,由点B(8,8),
    得:8=8k1,解得:k1=1
    ∴直线OB的解析式为y=x,
    ∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,
    ∴x﹣m=x2﹣3x,
    ∵抛物线与直线只有一个公共点,
    ∴△=16﹣2m=0,
    解得:m=8,
    此时x1=x2=4,y=x2﹣3x=﹣4,
    ∴D点的坐标为(4,﹣4)
    (3)∵直线OB的解析式为y=x,且A(6,0),
    ∴点A关于直线OB的对称点A′的坐标是(0,6),
    根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
    设直线A′B的解析式为y=k2x+6,过点(8,8),
    ∴8k2+6=8,解得:k2= ,
    ∴直线A′B的解析式是y=,
    ∵∠NBO=∠ABO,∠A′BO=∠ABO,
    ∴BA′和BN重合,即点N在直线A′B上,
    ∴设点N(n,),又点N在抛物线y=x2﹣3x上,
    ∴=n2﹣3n, 解得:n1=﹣,n2=8(不合题意,舍去)
    ∴N点的坐标为(﹣,).
    如图1,将△NOB沿x轴翻折,得到△N1OB1,

    则N1(﹣,-),B1(8,﹣8),
    ∴O、D、B1都在直线y=﹣x上.
    ∵△P1OD∽△NOB,△NOB≌△N1OB1,
    ∴△P1OD∽△N1OB1,
    ∴,
    ∴点P1的坐标为().
    将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),
    综上所述,点P的坐标是()或().
    【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
    20、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
    【解析】
    (2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
    (2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
    (3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
    ②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
    【详解】
    (2)∵C是半径OB中点,∴OCOB=2.
    ∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
    在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
    (2)如图2,连接AE,CE.
    ∵DE是AC垂直平分线,∴AE=CE.
    ∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
    连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
    ∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
    (3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
    ①当CD=CE时.
    ∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
    ②当CD=DE时.
    ∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
    连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
    综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.

    【点睛】
    本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
    21、证明见解析
    【解析】
    根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
    【详解】
    ∵EA⊥AB,EC⊥BC,
    ∴∠EAB=∠ECB=90°,
    在Rt△EAB与Rt△ECB中

    ∴Rt△EAB≌Rt△ECB,
    ∴AB=CB,∠ABE=∠CBE,
    ∵BD=BD,
    在△ABD与△CBD中

    ∴△ABD≌△CBD,
    ∴AD=CD.
    【点睛】
    本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
    22、(1)35,50;(2)①12;②y=﹣x+;③150米.
    【解析】
    (1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;
    (2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;
    ②由①中的相等关系可得y与x之间的函数关系式;
    ③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.
    【详解】
    解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),
    则乙单独完成所需天数为21天,
    ∴乙队每天修路的长度m=1050÷21=50(米),
    故答案为35,50;
    (2)①乙队修路的天数为=12(天);
    ②由题意,得:x+(30+50)y=1050,
    ∴y与x之间的函数关系式为:y=﹣x+;
    ③由题意,得:600×+(600+1160)(﹣x+)≤22800,
    解得:x≥150,
    答:若总费用不超过22800元,甲队至少先修了150米.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
    23、(1)4元或6元;(2)九折.
    【解析】
    解:(1)设每千克核桃应降价x元.
    根据题意,得(60﹣x﹣40)(100+×20)=2240,
    化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
    答:每千克核桃应降价4元或6元.
    (2)由(1)可知每千克核桃可降价4元或6元.
    ∵要尽可能让利于顾客,∴每千克核桃应降价6元.
    此时,售价为:60﹣6=54(元),.
    答:该店应按原售价的九折出售.
    24、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【解析】
    设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
    【详解】
    解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
    根据题意得:
    解得:x=1.
    经检验:x=1是原方程的解且符合实际问题的意义.
    ∴1.2x=1.2×1=2.
    答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【点睛】
    此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
    25、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
    【解析】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
    (2)OC∥DF,则 即可求解;
    (3)由S△ACE=S△AME﹣S△CME即可求解;
    (4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
    【详解】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
    即: 解得:
    故函数的表达式为: ①;
    (2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,

    ∵OC∥DF,∴OF=5OA=5,
    故点D的坐标为(﹣5,6),
    将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
    即直线AD的表达式为:y=﹣x+1,
    (3)设点E坐标为 则点M坐标为


    ∵故S△ACE有最大值,
    当x=﹣2时,最大值为;
    (4)存在,理由:
    ①当AP为平行四边形的一条边时,如下图,

    设点D的坐标为
    将点A向左平移2个单位、向上平移4个单位到达点P的位置,
    同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
    则点Q的坐标为
    将点Q的坐标代入①式并解得:
    ②当AP为平行四边形的对角线时,如下图,

    设点Q坐标为点D的坐标为(m,n),
    AP中点的坐标为(0,2),该点也是DQ的中点,
    则: 即:
    将点D坐标代入①式并解得:
    故点D的横坐标为:或或.
    【点睛】
    本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
    26、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
    【解析】
    (1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
    【详解】
    (1)设y1=kx+b,将(8,18),(9,20),代入
    y1=kx+b,得:
    解得
    所以y1关于x的函数解析式为y1=2x+2.
    (2)设李华从文化宫回到家所需的时间为y,则
    y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
    所以当x=9时,y取得最小值,最小值为39.5,
    答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
    【点睛】
    本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
    27、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.
    【解析】
    解:(1)如图,过点D作DE⊥AC于点E,
    过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
    ∴AF=AD=×8=4,∴DF=,
    在Rt△ABF中BF==3,
    ∴BD=DF﹣BF=4﹣3,sin∠ABF=,
    在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,
    ∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),

    ∴景点D向公路a修建的这条公路的长约是3.1km;
    (2)由题意可知∠CDB=75°,
    由(1)可知sin∠DBE==0.8,所以∠DBE=53°,
    ∴∠DCB=180°﹣75°﹣53°=52°,
    在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),
    ∴景点C与景点D之间的距离约为4km.

    相关试卷

    江苏省无锡市南长实验、侨谊教育集团2023-2024学年数学九上期末学业质量监测试题含答案:

    这是一份江苏省无锡市南长实验、侨谊教育集团2023-2024学年数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2023-2024学年江苏省无锡市南长实验、侨谊教育集团八上数学期末统考试题含答案:

    这是一份2023-2024学年江苏省无锡市南长实验、侨谊教育集团八上数学期末统考试题含答案,共8页。试卷主要包含了直线过点,,则的值是,若点A在y轴上,则点B位于,下列命题是假命题的是等内容,欢迎下载使用。

    2022-2023学年江苏省无锡市南长实验、侨谊教育集团数学七年级第二学期期末考试模拟试题含答案:

    这是一份2022-2023学年江苏省无锡市南长实验、侨谊教育集团数学七年级第二学期期末考试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若是最简二次根式,则的值可能是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map