2022年江苏省姜堰实验市级名校中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )
A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
2.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是( )
A. B. C. D.
3.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
4.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
5.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
6.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
7.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30° B.45° C.50° D.75°
8.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
9.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A.1,2 B.1,3
C.4,2 D.4,3
10.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )
A. B. C.3 D.
二、填空题(共7小题,每小题3分,满分21分)
11.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于_____.
12.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .
13.分解因式:x2y﹣2xy2+y3=_____.
14.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
15.菱形ABCD中,,其周长为32,则菱形面积为____________.
16.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.
17.8的算术平方根是_____.
三、解答题(共7小题,满分69分)
18.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
19.(5分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
20.(8分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式
A
B
C
D
E
人数
请你根据以上信息,回答下列问题:
接受问卷调查的共有 人,图表中的 , .
统计图中,类所对应的扇形的圆心角的度数是 度.
揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
21.(10分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)图中m的值为_______________.
(2)求这40个样本数据的平均数、众数和中位数:
(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
22.(10分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
(1)求证:△ACM∽△ABE.
(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.
23.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
24.(14分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
∴4=|2a+2|,a+2≠3,
解得:a=−3,
故选A.
点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
2、A
【解析】
∵Rt△ABC中,∠C=90°,sinA=,
∴cosA=,
∴∠A+∠B=90°,
∴sinB=cosA=.
故选A.
3、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
4、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
5、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
6、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
7、B
【解析】
试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.
8、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
9、A
【解析】
试题分析:通过猜想得出数据,再代入看看是否符合即可.
解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
30+4×3=42,
故选A.
点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
10、A
【解析】
∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB
∴,
∵DE=6,AB=10,AE=8,
∴,
解得BC=.
故选A.
二、填空题(共7小题,每小题3分,满分21分)
11、5+3或5+5 .
【解析】
分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.
【详解】
由题意可知,存在以下两种情况:
(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a,则较长的直角边为2a,由勾股定理可得:,解得:,
∴此时较短的直角边为,较长的直角边为,
∴此时直角三角形的周长为:;
(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x、y,
这有题意可得:①,②S△=,
∴③,
由①+③得:,即,
∴,
∴此时这个直角三角形的周长为:.
综上所述,这个半高直角三角形的周长为:或.
故答案为或.
【点睛】
(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.
12、1.
【解析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE=AC=5,
∴AC=2.
在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得
.
故答案是:1.
13、y(x﹣y)2
【解析】
原式提取公因式,再利用完全平方公式分解即可
【详解】
x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
14、 (x﹣1)(x﹣2)
【解析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
【详解】
解:已知方程的两根为:x1=1,x2=2,可得:
(x﹣1)(x﹣2)=0,
∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
【点睛】
一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
15、
【解析】
分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详解:∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为:=.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
16、
【解析】
解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
当x=0时,y=3,∴点B的坐标为(0,3);
当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
故答案为.
17、2.
【解析】
试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.
由算术平方根的定义可知:8的算术平方根是,
∵=2,
∴8的算术平方根是2.
故答案为2.
考点:算术平方根.
三、解答题(共7小题,满分69分)
18、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
19、每件乙种商品的价格为1元,每件甲种商品的价格为70元
【解析】
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
【详解】
解:
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
根据题意得:,
解得:x=70,
经检验,x=70是原方程的解,
∴x﹣10=1.
答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.
【点睛】
本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.
20、(1)150、45、36;(2)28.8°;(3)450人
【解析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
故答案为:28.8°;
(3)(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
21、(1)25;(2)平均数:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.
【解析】
(1)根据统计图中的数据可以求得m的值;
(2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;
(3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.
【详解】
解:(1),∴m的值为25;
(2)平均数:,
因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;
因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以
这组样本数据的中位数为28;
(3)×2000=300(名)
∴估计该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.
【点睛】
本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法.
22、(1)证明见解析;(2)证明见解析;(3)74.
【解析】
(1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
【详解】
(1)证明:∵四边形ABCD和四边形AEMN都是正方形,
∴,∠CAB=∠MAC=45°,
∴∠CAB-∠CAE=∠MAC-∠CAE,
∴∠BAE=∠CAM,
∴△ACM∽△ABE.
(2)证明:连结AC
因为△ACM∽△ABE,则∠ACM=∠B=90°,
因为∠ACB=∠ECF=45°,
所以∠ACM+∠ACB+∠ECF=180°,
所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
所以BD平行MF,
又因为MC=BE,FC=CE,
所以MF=BC=BD,
所以四边形BFMD是平行四边形
(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
=62+42+(2+6)4+ 26
=74.
【点睛】
本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
23、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
24、证明见解析
【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
【详解】
∵EA⊥AB,EC⊥BC,
∴∠EAB=∠ECB=90°,
在Rt△EAB与Rt△ECB中
,
∴Rt△EAB≌Rt△ECB,
∴AB=CB,∠ABE=∠CBE,
∵BD=BD,
在△ABD与△CBD中
,
∴△ABD≌△CBD,
∴AD=CD.
【点睛】
本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
2022届贵州省毕节市市级名校中考数学模拟精编试卷含解析: 这是一份2022届贵州省毕节市市级名校中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列说法正确的是,我省2013年的快递业务量为1等内容,欢迎下载使用。
2021-2022学年江苏省镇江市润州区市级名校中考数学模拟精编试卷含解析: 这是一份2021-2022学年江苏省镇江市润州区市级名校中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的方程=无解,则k的值为等内容,欢迎下载使用。
2021-2022学年广西浦北县市级名校中考数学模拟精编试卷含解析: 这是一份2021-2022学年广西浦北县市级名校中考数学模拟精编试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是,下列各式中计算正确的是等内容,欢迎下载使用。