|试卷下载
搜索
    上传资料 赚现金
    江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析01
    江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析02
    江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析

    展开
    这是一份江苏省无锡新区五校联考2022年中考数学全真模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是(  )
    A.k>8 B.k≥8 C.k≤8 D.k<8
    2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
    A. B.
    C. D.
    3.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )

    A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
    B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
    C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
    D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
    4.在﹣3,0,4,这四个数中,最大的数是( )
    A.﹣3 B.0 C.4 D.
    5.下列判断错误的是( )
    A.对角线相等的四边形是矩形
    B.对角线相互垂直平分的四边形是菱形
    C.对角线相互垂直且相等的平行四边形是正方形
    D.对角线相互平分的四边形是平行四边形
    6.方程x2﹣kx+1=0有两个相等的实数根,则k的值是(  )
    A.2 B.﹣2 C.±2 D.0
    7.如图,在△ABC中,DE∥BC,若,则等于( )

    A. B. C. D.
    8.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    9.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    10.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )
    A.
    B.
    C.
    D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
    ①四边形ACBE是菱形;
    ②∠ACD=∠BAE;
    ③AF:BE=2:1;
    ④S四边形AFOE:S△COD=2:1.
    其中正确的结论有_____.(填写所有正确结论的序号)

    12.方程的解是__________.
    13.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.

    14.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.

    15.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.

    16.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.

    17.如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m1.

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
    (1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为   ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为   ;若点P(a,b),则点P的“旋转对应点”P'的坐标为   ;
    (2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
    (3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.

    19.(5分)如图,分别与相切于点,点在上,且,,垂足为.
    求证:;若的半径,,求的长
    20.(8分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
    21.(10分)解不等式组,并把解集在数轴上表示出来.
    22.(10分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
    (1)求抛物线的表达式;
    (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)如图2,连接BC,PB,PC,设△PBC的面积为S.
    ①求S关于t的函数表达式;
    ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

    23.(12分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.

    小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    y1/cm
    0
    0.78
    1.76
    2.85
    3.98
    4.95
    4.47
    y2/cm
    4
    4.69
    5.26

    5.96
    5.94
    4.47
    (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
    ①连接BE,则BE的长约为   cm.
    ②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为   cm.
    24.(14分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
    (1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);
    (2)若这个输水管道有水部分的水面宽AB=8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    本题考查反比例函数的图象和性质,由k-8>0即可解得答案.
    【详解】
    ∵反比例函数y=的图象位于第一、第三象限,
    ∴k-8>0,
    解得k>8,
    故选A.
    【点睛】
    本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    2、C
    【解析】
    先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
    【详解】
    小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
    ∵小进比小俊少用了40秒,
    方程是,
    故选C.
    【点睛】
    本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
    3、C
    【解析】
    Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
    【详解】
    ∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
    ∴DO=BC=2,CO=3,
    ∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
    或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
    故选:C.
    【点睛】
    本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
    4、C
    【解析】
    试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,
    在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.
    5、A
    【解析】
    利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
    【详解】
    解:、对角线相等的四边形是矩形,错误;
    、对角线相互垂直平分的四边形是菱形,正确;
    、对角线相互垂直且相等的平行四边形是正方形,正确;
    、对角线相互平分的四边形是平行四边形,正确;
    故选:.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
    6、C
    【解析】
    根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
    【详解】
    ∵方程x2﹣kx+1=0有两个相等的实数根,
    ∴△=(﹣k)2﹣4×1×1=0,
    解得:k=±2,
    故选C.
    【点睛】
    本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
    7、C
    【解析】
    试题解析::∵DE∥BC,
    ∴,
    故选C.
    考点:平行线分线段成比例.
    8、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    9、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    10、B
    【解析】
    试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B
    考点:三视图

    二、填空题(共7小题,每小题3分,满分21分)
    11、①②④.
    【解析】
    根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵EC垂直平分AB,
    ∴OA=OB=AB=DC,CD⊥CE,
    ∵OA∥DC,
    ∴=,
    ∴AE=AD,OE=OC,
    ∵OA=OB,OE=OC,
    ∴四边形ACBE是平行四边形,
    ∵AB⊥EC,
    ∴四边形ACBE是菱形,故①正确,
    ∵∠DCE=90°,DA=AE,
    ∴AC=AD=AE,
    ∴∠ACD=∠ADC=∠BAE,故②正确,
    ∵OA∥CD,
    ∴,
    ∴,故③错误,
    设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
    ∴四边形AFOE的面积为4a,△ODC的面积为6a
    ∴S四边形AFOE:S△COD=2:1.故④正确.

    故答案是:①②④.
    【点睛】
    此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
    12、.
    【解析】
    根据解分式方程的步骤依次计算可得.
    【详解】
    解:去分母,得:,
    解得:,
    当时,,
    所以是原分式方程的解,
    故答案为:.
    【点睛】
    本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    13、3
    【解析】
    延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.
    【详解】

    延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.
    【点睛】
    本题考查了直角三角形斜边中线的性质.
    14、22.5
    【解析】
    连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.
    【详解】
    连接OC,
    ∵OE⊥AB,
    ∴∠EOB=90°,
    ∵点C为的中点,
    ∴∠BOC=45°,
    ∵OA=OC,
    ∴∠A=∠ACO=×45°=22.5°,
    故答案为:22.5°.
    【点睛】
    本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.
    15、
    【解析】
    因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r| 【详解】
    连接OA、OD,过O点作ON⊥AE,OM⊥AF.
    AN=AE=1,AM=AF=2,MD=AD-AM=3
    ∵四边形ABCD是矩形
    ∴∠BAD=∠ANO=∠AMO=90°,
    ∴四边形OMAN是矩形
    ∴OM=AN=1
    ∴OA=,OD=
    ∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交


    【点睛】
    本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
    16、15°
    【解析】
    分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.
    详解:∵AB=AC,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,
    ∵MN为AB的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.
    点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4
    17、2
    【解析】
    设与墙平行的一边长为xm,则另一面为 ,
    其面积=,
    ∴最大面积为 ;
    即最大面积是2m1.
    故答案是2.
    【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.

    三、解答题(共7小题,满分69分)
    18、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
    【解析】
    (1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
    ②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
    ③当P(a,b)时,同①的方法得,即可得出结论;
    (2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
    (3)先确定出yPP'=x+3,即可得出结论.
    【详解】
    解:(1)如图1,

    ①当P(﹣4,2)时,
    ∵PA⊥y轴,
    ∴∠PAH=90°,OA=2,PA=4,
    由旋转知,P'A=4,∠PAP'=60°,
    ∴∠P'AH=30°,
    在Rt△P'AH中,P'H=P'A=2,
    ∴AH=P'H=2,
    ∴OH=OA+AH=2+2,
    ∴P'(﹣2,2+2),
    ②当P'(﹣5,16)时,
    在Rt△P'AH中,∠P'AH=30°,P'H=5,
    ∴P'A=10,AH=5,
    由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
    ∴P(﹣10,16﹣5),
    ③当P(a,b)时,同①的方法得,P'(,b﹣a),
    故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
    (2)如图2,过点Q作QB⊥y轴于B,

    ∴∠BQQ'=60°,
    由题意知,△PAP'是等边三角形,
    ∴∠PAP'=∠PP'A=60°,
    ∵QB⊥y轴,PA⊥y轴,
    ∴QB∥PA,
    ∴∠P'QQ'=∠PAP'=60°,
    ∴∠P'QQ'=60°=∠PP'A,
    ∴PP'∥QQ';
    (3)设yPP'=kx+b',
    由题意知,k=,
    ∵直线经过点(,6),
    ∴b'=3,
    ∴yPP'=x+3,
    令y=0,
    ∴x=﹣,
    ∴直线PP'与x轴的交点坐标(﹣,0).
    【点睛】
    此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
    19、(1)见解析(2)5
    【解析】
    解:(1)证明:如图,连接,则.

    ∵,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∴.
    (2)连接,则.
    ∵,,,
    ∴,.
    ∴.
    ∴.
    设,则.
    在中,有.
    ∴.即.
    20、x=60
    【解析】
    设有x个客人,根据题意列出方程,解出方程即可得到答案.
    【详解】
    解:设有x个客人,则

    解得:x=60;
    ∴有60个客人.
    【点睛】
    本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
    21、﹣1≤x<1.

    【解析】
    求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.
    【详解】
    解不等式①,得x<1,
    解不等式②,得x≥﹣1,
    ∴不等式组的解集是﹣1≤x<1.
    不等式组的解集在数轴上表示如下:

    22、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
    【解析】
    【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
    (2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
    (1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
    ②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
    【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
    得,解得:,
    ∴抛物线的表达式为y=﹣x2+2x+1;
    (2)在图1中,连接PC,交抛物线对称轴l于点E,
    ∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
    ∴抛物线的对称轴为直线x=1,
    当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
    ∵抛物线的表达式为y=﹣x2+2x+1,
    ∴点C的坐标为(0,1),点P的坐标为(2,1),
    ∴点M的坐标为(1,6);
    当t≠2时,不存在,理由如下:
    若四边形CDPM是平行四边形,则CE=PE,
    ∵点C的横坐标为0,点E的横坐标为0,
    ∴点P的横坐标t=1×2﹣0=2,
    又∵t≠2,
    ∴不存在;
    (1)①在图2中,过点P作PF∥y轴,交BC于点F.
    设直线BC的解析式为y=mx+n(m≠0),
    将B(1,0)、C(0,1)代入y=mx+n,
    得,解得:,
    ∴直线BC的解析式为y=﹣x+1,
    ∵点P的坐标为(t,﹣t2+2t+1),
    ∴点F的坐标为(t,﹣t+1),
    ∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
    ∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
    ②∵﹣<0,
    ∴当t=时,S取最大值,最大值为.
    ∵点B的坐标为(1,0),点C的坐标为(0,1),
    ∴线段BC=,
    ∴P点到直线BC的距离的最大值为,
    此时点P的坐标为(,).

    【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
    23、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
    【解析】
    (1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
    (2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
    (3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
    ②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
    当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
    【详解】
    (1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
    ∵CD⊥AB,
    ∴(cm),
    ∴AD=AB+BD=4+0.9367=4.9367(cm),
    ∴(cm);
    补充完整如下表:

    (2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
    (3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
    ∴BE=BC=6cm,
    故答案为:6;
    ②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
    当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
    当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
    综上所述:BC的长度约为6cm或4.1cm;
    故答案为:6或4.1.

    【点睛】
    本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
    24、(1)详见解析;(2)这个圆形截面的半径是5 cm.
    【解析】
    (1)根据尺规作图的步骤和方法做出图即可;
    (2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.
    【详解】
    (1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作线段AC的垂直平分线l′与直线l交于点O,点O即为所求作的圆心.

    (2)如图,过圆心O作半径CO⊥AB,交AB于点D,
    设半径为r,则AD=AB=4,OD=r-2,
    在Rt△AOD中,r2=42+(r-2)2,解得r=5,
    答:这个圆形截面的半径是5 cm.
    【点睛】
    此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.

    相关试卷

    2023届江苏省无锡市两区联考中考数学全真模拟试题含解析: 这是一份2023届江苏省无锡市两区联考中考数学全真模拟试题含解析,共17页。

    2022年江苏省苏州姑苏区五校联考中考数学全真模拟试题含解析: 这是一份2022年江苏省苏州姑苏区五校联考中考数学全真模拟试题含解析,共25页。试卷主要包含了计算,化简•a5所得的结果是等内容,欢迎下载使用。

    2022届江苏省无锡新区六校联考中考数学模拟试题含解析: 这是一份2022届江苏省无锡新区六校联考中考数学模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中是一元二次方程的是,tan45º的值为,在数轴上表示不等式2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map