江苏省无锡锡北片2022年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,,,则的大小是
A. B. C. D.
2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )
A.13 B.15 C.17 D.19
3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
4.如图所示的几何体,上下部分均为圆柱体,其左视图是( )
A. B. C. D.
5.已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )
A.-6 B.- 3 C.3 D.6
6.下列各式计算正确的是( )
A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
7.估计介于( )
A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
8.下列各组单项式中,不是同类项的一组是( )
A.和 B.和 C.和 D.和3
9.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2 B.3 C.5 D.6
10.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是( )
A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.
12.已知x+y=8,xy=2,则x2y+xy2=_____.
13.已知b是a,c的比例中项,若a=4,c=16,则b=________.
14.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.
15.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm
16.化简__________.
三、解答题(共8题,共72分)
17.(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
18.(8分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
19.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
20.(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)
21.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
22.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
23.(12分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.
(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是 .
(2)当t=时,原函数为y=x2﹣2x
①图象G所对应的函数值y随x的增大而减小时,x的取值范围是 .
②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
24.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
依据,即可得到,再根据,即可得到.
【详解】
解:如图,,
,
又,
,
故选:D.
【点睛】
本题主要考查了平行线的性质,两直线平行,同位角相等.
2、B
【解析】
∵DE垂直平分AC,
∴AD=CD,AC=2EC=8,
∵C△ABC=AC+BC+AB=23,
∴AB+BC=23-8=15,
∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.
故选B.
3、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
4、C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
5、B
【解析】
根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.
【详解】
根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.
故选B.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.
6、C
【解析】
根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
【详解】
A. a+3a=4a,故不正确;
B. (–a2)3=(-a)6 ,故不正确;
C. a3·a4=a7 ,故正确;
D. (a+b)2=a2+2ab+b2,故不正确;
故选C.
【点睛】
本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
7、C
【解析】
解:∵,
∴,即
∴估计在2~3之间
故选C.
【点睛】
本题考查估计无理数的大小.
8、A
【解析】
如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.
【详解】
根据题意可知:x2y和2xy2不是同类项.
故答案选:A.
【点睛】
本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.
9、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
10、C
【解析】
试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
B、本市明天将有85%的时间降水,错误;
C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
D、明天肯定下雨,错误.
故选C.
考点:概率的意义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a>1
【解析】
根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,
故答案为a>1.
12、1
【解析】
将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
【详解】
∵x+y=8,xy=2,
∴x2y+xy2=xy(x+y)=2×8=1.
故答案为:1.
【点睛】
本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
13、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
【点睛】
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
14、.
【解析】
解:∵把x=1分别代入、,得y=1、y=,
∴A(1,1),B(1,).∴.
∵P为y轴上的任意一点,∴点P到直线BC的距离为1.
∴△PAB的面积.
故答案为:.
15、
【解析】
根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
【详解】
∵AD是BC边上的高,CE是AB边上的高,
∴AB•CE=BC•AD,
∵AD=6,CE=8,
∴=,
∴=,
∵AB=AC,AD⊥BC,
∴BD=DC=BC,
∵AB2−BD2=AD2,
∴AB2=BC2+36,即BC2=BC2+36,
解得:BC=.
故答案为:.
【点睛】
本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关
16、
【解析】
根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.
【详解】
解:法一、
=(- )
=
= 2-m.
故答案为:2-m.
法二、原式=
= =1-m+1
=2-m.
故答案为:2-m.
【点睛】
本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.
三、解答题(共8题,共72分)
17、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
【解析】
(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
【详解】
(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
答:商家一次购买这种产品1件时,销售单价恰好为2800元;
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
当0≤x≤10时,y=(3200﹣2500)x=700x,
当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
当x>1时,y=(2800﹣2500)•x=300x;
(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
函数y=700x,y=300x均是y随x增大而增大,
而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
最低价为3200﹣5•(75﹣10)=2875元,
答:公司应将最低销售单价调整为2875元.
【点睛】
本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
18、等腰直角三角形
【解析】
首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.
【详解】
解:∵a2c2-b2c2=a4-b4,
∴a4-b4-a2c2+b2c2=0,
∴(a4-b4)-(a2c2-b2c2)=0,
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2+b2-c2)(a2-b2)=0
得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,
即△ABC为直角三角形或等腰三角形或等腰直角三角形.
考点:勾股定理的逆定理.
19、8+6.
【解析】
如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
【详解】
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
∴CH=BC=6,BH==6,
在Rt△ACH中,tanA==,
∴AH=8,
∴AC==10,
【点睛】
本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
20、3.05米
【解析】
延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
【详解】
解:
如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan60°=1.5×1.73=2.595,
∴GM=AB=2.595,
在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
∴sin45°=,
∴FG=1.76,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
【点睛】
本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
21、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
22、(1)150,(2)36°,(3)1.
【解析】
(1)根据图中信息列式计算即可;
(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
(3)360°×乒乓球”所占的百分比即可得到结论;
(4)根据题意计算即可.
【详解】
(1)m=21÷14%=150,
(2)“足球“的人数=150×20%=30人,
补全上面的条形统计图如图所示;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
(4)1200×20%=1人,
答:估计该校约有1名学生最喜爱足球活动.
故答案为150,36°,1.
【点睛】
本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
23、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
【解析】
(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
(2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
(3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
【详解】
(1)当x=时,y=,
当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
翻折后函数的表达式为:y=﹣x+2,
当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
函数与x轴交点坐标为:(0,0),因为所以舍去.
故答案为:(2,0);
(2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:
点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
则点A、B、C的横坐标分别为﹣、1、,
①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
故答案为:﹣≤x≤1或x≥;
②函数在点A处取得最大值,
x=﹣,y=(﹣)2﹣2×(﹣)=,
答:图象G所对应的函数有最大值为;
(3)n=﹣1时,y=x2+2x﹣2,
①参考(2)中的图象知:
当y=2时,y=x2+2x﹣2=2,
解得:x=﹣1±,
若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
所以;
②函数的对称轴为:x=n,
令y=x2﹣2nx+n2﹣3=0,则x=n±,
当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
当x=n在y轴左侧时,(n≤0),
此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,
则函数在AB段和点C右侧,
故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
解得:n≤;
当x=n在y轴右侧时,(n≥0),
同理可得:n≥;
综上:n≤或n≥.
【点睛】
在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
24、(1)证明见解析;(2)BC=;.
【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴=.
∴BF==.
江苏省无锡锡北片达标名校2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡锡北片达标名校2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了单项式2a3b的次数是,-3的相反数是,下列图形中一定是相似形的是,下列说法错误的是等内容,欢迎下载使用。
2022年江苏省无锡锡山区锡东片达标名校中考适应性考试数学试题含解析: 这是一份2022年江苏省无锡锡山区锡东片达标名校中考适应性考试数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。
2022年江苏省无锡市锡山区(锡北片)中考数学模拟精编试卷含解析: 这是一份2022年江苏省无锡市锡山区(锡北片)中考数学模拟精编试卷含解析,共23页。试卷主要包含了在平面直角坐标系中,点P,二次函数的对称轴是等内容,欢迎下载使用。