|试卷下载
搜索
    上传资料 赚现金
    江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析01
    江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析02
    江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析

    展开
    这是一份江苏省无锡市江阴市长寿中学2022年中考数学考前最后一卷含解析,共27页。试卷主要包含了下列图形中,主视图为①的是,在一组数据等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )

    A.8 B.10 C.13 D.14
    2.cos30°的值为(   )
    A.1                              B.                    C.                          D.
    3.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
    A.矩形 B.菱形
    C.对角线互相垂直的四边形 D.对角线相等的四边形
    4.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    5.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是(  )

    A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE
    6.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则  

    A.明明的速度是80米分 B.第二次相遇时距离B地800米
    C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米
    7.下列图形中,主视图为①的是(  )

    A. B. C. D.
    8.将一次函数的图象向下平移2个单位后,当时,的取值范围是( )
    A. B. C. D.
    9.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是(  )
    A.中位数不变,方差不变 B.中位数变大,方差不变
    C.中位数变小,方差变小 D.中位数不变,方差变小
    10.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为  
    A.元 B.元 C.元 D.元
    11.如图,若AB∥CD,则α、β、γ之间的关系为(  )

    A.α+β+γ=360° B.α﹣β+γ=180°
    C.α+β﹣γ=180° D.α+β+γ=180°
    12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为(  )

    A. B.2 C. D.3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形

    14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    15.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是  .
    16.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    17.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______

    18.一组数据:1,2,a,4,5的平均数为3,则a=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.

    (1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
    (2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.
    20.(6分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.

    21.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
    22.(8分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
    (1)求证:直线BF是⊙O的切线;
    (2)若AB=5,sin∠CBF=,求BC和BF的长.

    23.(8分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

    (1)求直线的解析式;
    (2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
    24.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
    填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    25.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

    图 ① 图②
    26.(12分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.

    [理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
    [探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
    27.(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据三角形的面积公式以及切线长定理即可求出答案.
    【详解】
    连接PE、PF、PG,AP,
    由题意可知:∠PEC=∠PFA=PGA=90°,
    ∴S△PBC=BC•PE=×4×2=4,
    ∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
    ∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
    ∴由切线长定理可知:S△APG=S四边形AFPG=,
    ∴=×AG•PG,
    ∴AG=,
    由切线长定理可知:CE=CF,BE=BG,
    ∴△ABC的周长为AC+AB+CE+BE
    =AC+AB+CF+BG
    =AF+AG
    =2AG
    =13,
    故选C.

    【点睛】
    本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
    2、D
    【解析】
    cos30°=.
    故选D.
    3、C
    【解析】
    【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
    【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
    ∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    假设AC=BD,
    ∵EH=AC,EF=BD,
    则EF=EH,
    ∴平行四边形EFGH是菱形,
    即只有具备AC=BD即可推出四边形是菱形,
    故选D.

    【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
    4、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
    5、A
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    ∵EB=CF,
    ∴EB+BF=CF+BF,即EF=BC,
    又∵∠A=∠D,
    A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
    B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
    C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
    D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
    故选A.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    6、B
    【解析】
    C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;
    A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;
    B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;
    D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.
    【详解】
    解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,

    出发20分时两人第一次相遇,C选项错误;
    亮亮的速度为米分,
    两人的速度和为米分,
    明明的速度为米分,A选项错误;
    第二次相遇时距离B地距离为米,B选项正确;
    出发35分钟时两人间的距离为米,D选项错误.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.
    7、B
    【解析】
    分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.
    详解:A、主视图是等腰梯形,故此选项错误;
    B、主视图是长方形,故此选项正确;
    C、主视图是等腰梯形,故此选项错误;
    D、主视图是三角形,故此选项错误;
    故选B.
    点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.
    8、C
    【解析】
    直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.
    【详解】
    将一次函数向下平移2个单位后,得:

    当时,则:

    解得:,
    当时,,
    故选C.
    【点睛】
    本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.
    9、D
    【解析】
    根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
    【详解】
    ∵原数据的中位数是=3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
    ∵新数据的中位数为3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
    所以新数据与原数据相比中位数不变,方差变小,
    故选:D.
    【点睛】
    本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
    10、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    亿=115956000000,
    所以亿用科学记数法表示为1.15956×1011,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    11、C
    【解析】
    过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
    【详解】
    解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
    ∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
    ∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
    故选:C.

    【点睛】
    本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
    12、C
    【解析】
    延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
    【详解】
    解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
    ∵BC=3,AD=1,
    ∴C是BE的中点,
    ∵M是BD的中点,
    ∴CM= DE=AB,
    ∵AC⊥BC,
    ∴AB==,
    ∴CM= ,
    故选:C.

    【点睛】
    此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、圆
    【解析】
    根据题意作图,即可得到点F的运动轨迹.
    【详解】
    如图,根据题意作下图,可知F的运动轨迹为圆⊙O’.

    【点睛】
    此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.
    14、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.
    15、1.
    【解析】
    依据调和数的意义,有-=-,解得x=1.
    16、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.
    17、
    【解析】
    先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
    【详解】
    如图,连接OB、OC,以O为圆心,OC为半径画圆,

    则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
    即S=πOB2-πOC2=(m2-n2)π,
    OB2-OC2=m2-n2,
    ∵AC=m,BC=n(m>n),
    ∴AM=m+n,
    过O作OD⊥AB于D,
    ∴BD=AD=AB=,CD=AC-AD=m-=,
    由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
    ∴m2-n2=mn,
    m2-mn-n2=0,
    m=,
    ∵m>0,n>0,
    ∴m=,
    ∴,
    故答案为.
    【点睛】
    此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
    18、1
    【解析】
    依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),;(2),1,1.
    【解析】
    (1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;
    (2)由题意可得,由(1)可得点的坐标为, 表达出△OMP的面积即可,利用二次函数的性质求出最大值.
    【详解】
    解:(1)∵OA=6,OC=4, 四边形OABC为矩形,
    ∴AB=OC=4,
    ∴点B,
    设直线OB解析式为,将B代入得,解得,
    ∴,
    故答案为:;
    (2)由题可知,,

    由(1)可知,点的坐标为




    ∴当时,有最大值1.
    【点睛】
    本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.
    20、 (1)证明见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
    (2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
    详解:
    (1)证明:连结OC,
    ∵DE与⊙O相切于点C,
    ∴OC⊥DE.
    ∵BD⊥DE,
    ∴OC∥BD. .
    ∴∠1=∠2,
    ∵OB=OC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    即BC平分∠DBA. .

    (2)∵OC∥BD,
    ∴△EBD∽△EOC,△DBM∽△OCM,.
    ∴,
    ∴,
    ∵,设EA=2k,AO=3k,
    ∴OC=OA=OB=3k.
    ∴.
    点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
    21、(1)政府这个月为他承担的总差价为644元;
    (2)当销售单价定为34元时,每月可获得最大利润144元;
    (3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
    【解析】
    试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
    (2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
    (3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
    试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,
    344×(12﹣14)=344×2=644元,
    即政府这个月为他承担的总差价为644元;
    (2)依题意得,w=(x﹣14)(﹣14x+544)
    =﹣14x2+644x﹣5444
    =﹣14(x﹣34)2+144
    ∵a=﹣14<4,∴当x=34时,w有最大值144元.
    即当销售单价定为34元时,每月可获得最大利润144元;
    (3)由题意得:﹣14x2+644x﹣5444=2,
    解得:x1=24,x2=1.
    ∵a=﹣14<4,抛物线开口向下,

    ∴结合图象可知:当24≤x≤1时,w≥2.
    又∵x≤25,
    ∴当24≤x≤25时,w≥2.
    设政府每个月为他承担的总差价为p元,
    ∴p=(12﹣14)×(﹣14x+544)
    =﹣24x+3.
    ∵k=﹣24<4.
    ∴p随x的增大而减小,
    ∴当x=25时,p有最小值544元.
    即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
    考点:二次函数的应用.
    22、(1)证明见解析;(2)BC=;.
    【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
    (2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
    (1)证明:连接AE,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴∠1+∠2=90°.
    ∵AB=AC,
    ∴∠1=∠CAB.
    ∵∠CBF=∠CAB,
    ∴∠1=∠CBF
    ∴∠CBF+∠2=90°
    即∠ABF=90°
    ∵AB是⊙O的直径,
    ∴直线BF是⊙O的切线.
    (2)解:过点C作CG⊥AB于G.

    ∵sin∠CBF=,∠1=∠CBF,
    ∴sin∠1=,
    ∵在Rt△AEB中,∠AEB=90°,AB=5,
    ∴BE=AB•sin∠1=,
    ∵AB=AC,∠AEB=90°,
    ∴BC=2BE=2,
    在Rt△ABE中,由勾股定理得AE==2,
    ∴sin∠2===,cos∠2===,
    在Rt△CBG中,可求得GC=4,GB=2,
    ∴AG=3,
    ∵GC∥BF,
    ∴△AGC∽△ABF,
    ∴=.
    ∴BF==.
    23、(1)直线的解析式为:.(2)平移的时间为5秒.
    【解析】
    (1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
    (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
    在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
    【详解】
    (1)由题意得,
    ∴点坐标为.
    ∵在中,,

    ∴点的坐标为.
    设直线的解析式为,
    由过、两点,
    得,
    解得,
    ∴直线的解析式为:.
    (2)如图,

    设平移秒后到处与第一次外切于点,
    与轴相切于点,连接,.
    则,
    ∵轴,∴,
    在中,.
    ∵,
    ∴,
    ∴(秒),
    ∴平移的时间为5秒.
    【点睛】
    本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
    24、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    25、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.
    【解析】
    (1)根据点的实际意义可得;
    (2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.
    【详解】
    (1)由图象可知,容器内原有水0.3 L.
    (2)由图象可知W与t之间的函数图象经过点(0,0.3),
    故设函数关系式为W=kt+0.3.
    又因为函数图象经过点(1.5,0.9),
    代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.
    故W与t之间的函数关系式为W=0.4t+0.3.
    当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),
    即在这种滴水状态下一天的滴水量为9.6 L.
    【点睛】
    本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.
    26、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
    【解析】
    (1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
    (2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    (3)作QN⊥AP于N,可得tan∠APQ===,
    tan∠APE===,
    ∴=,
    【详解】
    解:[理解]∵AC和BD是“对应边”,
    ∴AC=BD,
    设AC=2x,则CD=x,BD=2x,
    ∵∠C=90°,
    ∴BC===x,
    ∴tanA===;
    [探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
    如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
    ∵PC=QC,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴===,
    ∵PE=CE,
    ∴=,
    分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    如图3,作QN⊥AP于N,
    ∴MN=AN=PM=QM,
    ∴QN=MN,
    ∴ntan∠APQ===,
    ∴ta∠APE===,
    ∴=,
    综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.

    【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
    27、(1)袋子中白球有2个;(2)见解析, .
    【解析】
    (1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)设袋子中白球有x个,
    根据题意得:,
    解得:x=2,
    经检验,x=2是原分式方程的解,
    ∴袋子中白球有2个;
    (2)画树状图得:

    ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
    ∴两次都摸到相同颜色的小球的概率为:.
    【点睛】
    此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.

    相关试卷

    江苏省无锡市硕放中学2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份江苏省无锡市硕放中学2021-2022学年中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    江苏省无锡市经开区2022年中考数学考前最后一卷含解析: 这是一份江苏省无锡市经开区2022年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣的相反数是,某市2017年国内生产总值,下列运算正确的是,y=等内容,欢迎下载使用。

    江苏省无锡市江阴市2022年中考数学考前最后一卷含解析: 这是一份江苏省无锡市江阴市2022年中考数学考前最后一卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map