搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南通中学2022年中考适应性考试数学试题含解析

    江苏省南通中学2022年中考适应性考试数学试题含解析第1页
    江苏省南通中学2022年中考适应性考试数学试题含解析第2页
    江苏省南通中学2022年中考适应性考试数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南通中学2022年中考适应性考试数学试题含解析

    展开

    这是一份江苏省南通中学2022年中考适应性考试数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,这个数是,若关于x的一元二次方程x等内容,欢迎下载使用。
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.数据3、6、7、1、7、2、9的中位数和众数分别是( )
    A.1和7B.1和9C.6和7D.6和9
    2.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
    A.10B.14C.10或14D.8或10
    3.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m ax2+bx+c时,x的取值范围是-4 0,解得m>﹣1,故选D.
    【点睛】
    本题熟练掌握一元二次方程的基本概念是本题的解题关键.
    9、A
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
    【详解】
    解:这组数据中,出现的次数最多,故众数为,
    共有30人,
    第15和16人身高的平均数为中位数,
    即中位数为:,
    故选:A.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    10、D
    【解析】
    连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
    【详解】
    解:如图,连接OC、OD、BD,
    ∵点C、D是半圆O的三等分点,
    ∴,
    ∴∠AOC=∠COD=∠DOB=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴OC=OD=CD,
    ∵,
    ∴,
    ∵OB=OD,
    ∴△BOD是等边三角形,则∠ODB=60°,
    ∴∠ODB=∠COD=60°,
    ∴OC∥BD,
    ∴,
    ∴S阴影=S扇形OBD,
    S半圆O,
    飞镖落在阴影区域的概率,
    故选:D.
    【点睛】
    本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
    11、C
    【解析】
    分析:
    过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
    详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
    (2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
    (3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
    综上所述,符合要求的半径为2的圆共有3个.
    故选C.
    点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
    12、B
    【解析】
    根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
    【详解】
    ∵点A的坐标为(﹣3,﹣4),
    ∴OA==5,
    ∵四边形AOCB是菱形,
    ∴AB=OA=5,AB∥x轴,
    ∴B(﹣8,﹣4),
    ∵点E是菱形AOCB的中心,
    ∴E(﹣4,﹣2),
    ∴k=﹣4×(﹣2)=8,
    故选B.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1或1﹣2
    【解析】
    当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.
    【详解】
    解:如图1所示:
    由翻折的性质可知PF=CF=1,
    ∵ABFE为正方形,边长为2,
    ∴AF=2.
    ∴PA=1﹣2.
    如图2所示:
    由翻折的性质可知PF=FC=1.
    ∵ABFE为正方形,
    ∴BE为AF的垂直平分线.
    ∴AP=PF=1.
    故答案为:1或1﹣2.
    【点睛】
    本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.
    14、y=(x﹣3)2+2
    【解析】
    根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.
    【详解】
    解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).
    向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,
    故答案为:y=(x﹣3)2+2.
    【点睛】
    此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
    15、9.2×10﹣1.
    【解析】
    根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
    【详解】
    根据科学记数法的正确表示形式可得:
    0.00092用科学记数法表示是9.2×10﹣1.
    故答案为: 9.2×10﹣1.
    【点睛】
    本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
    16、6
    【解析】
    此题涉及多边形内角和和外角和定理
    多边形内角和=180(n-2), 外角和=360º
    所以,由题意可得180(n-2)=2×360º
    解得:n=6
    17、
    【解析】
    试题解析:
    设a=2t,b=3t,

    故答案为:
    18、
    【解析】
    根据,DE∥BC,结合平行线分线段成比例来求.
    【详解】
    ∵,DE∥BC,
    ∴,
    ∴ = =.
    ∵,

    ∴.
    故答案为:.
    【点睛】
    本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 ;.
    【解析】
    先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
    【详解】
    解:原式==
    把代入得:原式=.
    【点睛】
    本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
    20、足球单价是60元,篮球单价是90元.
    【解析】
    设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
    【详解】
    解:足球的单价分别为x元,篮球单价是1.5x元,
    可得:,
    解得:x=60,
    经检验x=60是原方程的解,且符合题意,
    1.5x=1.5×60=90,
    答:足球单价是60元,篮球单价是90元.
    【点睛】
    本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
    21、 (1)-2 (2)-
    【解析】
    试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
    (2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
    解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
    =2﹣2×+1﹣3
    =2﹣+1﹣3
    =﹣2;
    (2)•(a2﹣b2)
    =•(a+b)(a﹣b)
    =a+b,
    当a=,b=﹣2时,原式=+(﹣2)=﹣.
    22、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意作图即可;
    (2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
    【详解】
    (1)解:如图所示:E点即为所求;
    (2)证明:∵CE⊥BC,
    ∴∠BCE=90°,
    ∵∠ABC=90°,
    ∴∠BCE+∠ABC=180°,
    ∴AB∥CE,
    ∴∠ABE=∠CEB,∠BAC=∠ECA,
    ∵BD为AC边上的中线,
    ∴AD=DC,
    在△ABD和△CED中

    ∴△ABD≌△CED(AAS),
    ∴AB=EC,
    ∴四边形ABCE是平行四边形,
    ∵∠ABC=90°,
    ∴平行四边形ABCE是矩形.
    【点睛】
    本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
    23、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
    24、(1);(2);(3)
    【解析】
    (1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
    (2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
    (3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
    【详解】
    解:
    (1)

    设直线表达式为,
    ,解得
    直线表达式为;
    (2) 直线可以看到是由直线平移得到,
    当直线过时,直线与矩形有一个公共点,如图1,

    当过点时,代入可得,解得.
    当过点时,可得
    直线与矩形有公共点时,的取值范围为;
    (3) ,
    直线过,且,
    如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,
    当过点时,代入可得,解得
    直线:与矩形没有公共点时的取值范围为
    【点睛】
    本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
    25、证明见解析.
    【解析】
    试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.
    试题解析:证明:∵AB∥CD
    ∴∠A=∠D ∠B=∠C
    ∵OA=OB
    ∴∠A=∠B
    ∴∠C=∠D
    ∴OC=OD
    考点:等腰三角形的性质与判定,平行线的性质
    26、+4.
    【解析】
    原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
    【详解】
    原式=++2+2×=+4.
    【点睛】
    本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
    27、(1)(2)见解析;(3)P(0,2).
    【解析】
    分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.
    (2)分别作各点关于x轴的对称点,依次连接即可.
    (3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.
    详解:(1)(2)如图所示:
    (3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.
    设直线B1C′的解析式为y=kx+b(k≠0),
    ∵B1(﹣2,-2),C′(1,4),
    ∴,解得:,
    ∴直线AB2的解析式为:y=2x+2,
    ∴当x=0时,y=2,∴P(0,2).
    点睛:本题主要考查轴对称图形的绘制和轴对称的应用.
    身高
    人数
    1
    3
    4
    7
    8
    7

    相关试卷

    江苏省南通市南通中学2021-2022学年中考二模数学试题含解析:

    这是一份江苏省南通市南通中学2021-2022学年中考二模数学试题含解析,共19页。试卷主要包含了下列运算正确的是,下列分式是最简分式的是等内容,欢迎下载使用。

    2022届江苏省启东市建新中学中考适应性考试数学试题含解析:

    这是一份2022届江苏省启东市建新中学中考适应性考试数学试题含解析,共19页。试卷主要包含了的平方根是,﹣18的倒数是等内容,欢迎下载使用。

    2022届江苏省南通市南通中学中考联考数学试题含解析:

    这是一份2022届江苏省南通市南通中学中考联考数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map