


江苏省南京市十三中2021-2022学年中考四模数学试题含解析
展开
这是一份江苏省南京市十三中2021-2022学年中考四模数学试题含解析,共25页。试卷主要包含了已知等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列实数中,为无理数的是( )
A.B.C.﹣5D.0.3156
2.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为( )
A.8B.8C.4D.6
3.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )
A.(﹣3,﹣4)或(3,4)B.(﹣4,﹣3)
C.(﹣4,﹣3)或(4,3)D.(﹣3,﹣4)
4.下列计算正确的是( )
A.=±3B.﹣32=9C.(﹣3)﹣2=D.﹣3+|﹣3|=﹣6
5.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是( )
A.①③B.②④C.①③④D.②③④
6.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
A.随点C的运动而变化
B.不变
C.在使PA=OA的劣弧上
D.无法确定
7.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前跑过的路程大于小林前跑过的路程
D.小林在跑最后的过程中,与小苏相遇2次
8.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )
A.B.C.D.
9.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
A.B.C.D.
10.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1B.C.D.
11.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A.10B.9C.8D.7
12.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )
A.a+b<0B.a>|﹣2|C.b>πD.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.
14.关于的方程有两个不相等的实数根,那么的取值范围是__________.
15.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.
16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.
17.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.
18.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
20.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
21.(6分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).
请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.
22.(8分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
23.(8分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cs73.7°≈,tan73.7°≈
24.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程两个根均为正整数,求负整数m的值.
25.(10分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
26.(12分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.
(1)求点A、B的坐标;
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
27.(12分)先化简,再求值:,其中x满足x2﹣x﹣1=1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据无理数的定义解答即可.
【详解】
选项A、是分数,是有理数;
选项B、是无理数;
选项C、﹣5为有理数;
选项D、0.3156是有理数;
故选B.
【点睛】
本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
2、D
【解析】
分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
详解: 如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC=2,
∴AC=2BC=4,
∴AB===6,
故选D.
点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
3、A
【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.
【详解】
解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),
故选A.
【点睛】
本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
4、C
【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
【详解】
=3,故选项A不合题意;
﹣32=﹣9,故选项B不合题意;
(﹣3)﹣2=,故选项C符合题意;
﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
故选C.
【点睛】
本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
5、C
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
【详解】
①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
(x+y)2+y2=(x)2
∴x2=2y(x+y)
∵S△CEF=x2,S△ABE=y(x+y),
∴S△ABE=S△CEF.(故④正确).
综上所述,正确的有①③④,
故选C.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
6、B
【解析】
因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
【详解】
解:连接OP,
∵CP是∠OCD的平分线,
∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B.
【点睛】
本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
7、D
【解析】
A.由图可看出小林先到终点,A错误;
B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
故选D.
8、D
【解析】
如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
【详解】
解:如图,连接OD.
解:如图,连接OD.
根据折叠的性质知,OB=DB.
又∵OD=OB,
∴OD=OB=DB,即△ODB是等边三角形,
∴∠DOB=60°.
∵∠AOB=110°,
∴∠AOD=∠AOB-∠DOB=50°,
∴的长为 =5π.
故选D.
【点睛】
本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
9、C
【解析】
A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.
10、B
【解析】
直接利用概率的意义分析得出答案.
【详解】
解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选B.
【点睛】
此题主要考查了概率的意义,明确概率的意义是解答的关键.
11、D
【解析】
分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
故选D.
点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
12、D
【解析】
根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
【详解】
a=﹣2,2<b<1.
A.a+b<0,故A不符合题意;
B.a<|﹣2|,故B不符合题意;
C.b<1<π,故C不符合题意;
D.<0,故D符合题意;
故选D.
【点睛】
本题考查了实数与数轴,利用有理数的运算是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
解:∵平移后解析式是y=x﹣b,
代入y=得:x﹣b=,
即x2﹣bx=5,
y=x﹣b与x轴交点B的坐标是(b,0),
设A的坐标是(x,y),
∴OA2﹣OB2
=x2+y2﹣b2
=x2+(x﹣b)2﹣b2
=2x2﹣2xb
=2(x2﹣xb)
=2×5=1,
故答案为1.
点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
14、且
【解析】
分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
15、210.
【解析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.
【详解】
∵∠1+∠2=210°,
∴∠ABC+∠BCD=180°×2﹣210°=150°,
∴∠A+∠D=360°﹣150°=210°.
故答案为:210.
【点睛】
本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.
16、1
【解析】
由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
【详解】
解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△ECD,
∴,
即 ,
解得:AB= =1(米).
故答案为1.
【点睛】
本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.
17、﹣1
【解析】
先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
【详解】
在正方形ABCD中,AB=BC,∠ABC=∠BCD,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
∵∠CBF+∠ABF=90°
∴∠BAE+∠ABF=90°
∴∠AGB=90°
∴点G在以AB为直径的圆上,
由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
∵正方形ABCD,BC=2,
∴AO=1=OG
∴OD=,
∴DG=−1,
故答案为−1.
【点睛】
本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
18、4
【解析】
连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.
【详解】
如图,连接并延长交于G,连接并延长交于H,
∵点E、F分别是和的重心,
∴,,,,
∵,
∴,
∵,,
∴,
∵,
∴,
∴,
∴,
故答案为:4
【点睛】
本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2).
【解析】
(1)直接利用概率公式计算;
(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
【详解】
解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
画树状图为:
共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
所以该纽能够翻译上述两种语言的概率= .
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
20、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
【解析】
试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
试题解析:解:(1)AF=BE,AF⊥BE.
(2)结论成立.
证明:∵四边形ABCD是正方形,
∴BA="AD" =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,
即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(3)结论都能成立.
考点:正方形,等边三角形,三角形全等
21、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
(2)根据条形统计图求出捐4本的人数为,再画出图形即可;
(3)用360°乘以所捐图书是6本的人数所占比例可得;
(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
【详解】
(1)∵捐 2 本的人数是 15 人,占 30%,
∴该班学生人数为 15÷30%=50 人;
(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
补图如下;
(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
心角为 360°×=36°.
(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
∴全校 2000 名学生共捐 2000×=6280(本),
答:全校 2000 名学生共捐 6280 册书.
【点睛】
本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
22、(1)证明见解析;(2)
【解析】
试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
试题解析:(1)∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.
(2)作DF⊥AB于F,连接OE,∵DB=DE, ∴EF=BE=3,在 RT△DEF中,EF=3,DE=BD=5,EF=3 , ∴DF=∴sin∠DEF== , ∵∠AOE=∠DEF, ∴在RT△AOE中,sin∠AOE= ,
∵AE=6, ∴AO=.
【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
23、点O到BC的距离为480m.
【解析】
作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.
【详解】
作OM⊥BC于M,ON⊥AC于N,
则四边形ONCM为矩形,
∴ON=MC,OM=NC,
设OM=x,则NC=x,AN=840﹣x,
在Rt△ANO中,∠OAN=45°,
∴ON=AN=840﹣x,则MC=ON=840﹣x,
在Rt△BOM中,BM==x,
由题意得,840﹣x+x=500,
解得,x=480,
答:点O到BC的距离为480m.
【点睛】
本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.
24、 (1)见解析;(2) m=-1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
【详解】
(1)∵△=(m+3)2﹣4(m+2)
=(m+1)2
∴无论m取何值,(m+1)2恒大于等于1
∴原方程总有两个实数根
(2)原方程可化为:(x-1)(x-m-2)=1
∴x1=1, x2=m+2
∵方程两个根均为正整数,且m为负整数
∴m=-1.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
25、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
26、(1)A(﹣4,0),B(3,0);(2);(3).
【解析】
(1)设y=0,可求x的值,即求A,B的坐标;
(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;
(3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.
【详解】
(1)设y=0,则0=ax2+ax﹣12a (a<0),
∴x1=﹣4,x2=3,
∴A(﹣4,0),B(3,0)
(2)如图1,作MD⊥x轴,
∵MD⊥x轴,OC⊥x轴,
∴MD∥OC,
∴=且NB=MN,
∴OB=OD=3,
∴D(﹣3,0),
∴当x=﹣3时,y=﹣6a,
∴M(﹣3,﹣6a),
∴MD=﹣6a,
∵ON∥MD
∴,
∴ON=﹣3a,
根据题意得:C(0,﹣12a),
∵S△MBC=,
∴(﹣12a+3a)×6=,
a=﹣,
(3)如图2:过M点作ME∥AB,
∵ME∥AB,
∴∠EMB=∠ABM且∠CMB=2∠ABM,
∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,
∴△CME≌△MNE,
∴CE=EN,
设NO=m,=k(k>0),
∵ME∥AB,
∴==k,
∴ME=3k,EN=km=CE,
∴EO=km+m,
CO=CE+EN+ON=2km+m=﹣12a,
即,
∴M(﹣3k,km+m),
∴km+m=a(9k2﹣3k﹣12),
(k+1)×=(k+1)(9k﹣12),
∴=9k-12,
∴k=,
∴.
【点睛】
本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.
27、2.
【解析】
根据分式的运算法则进行计算化简,再将x2=x+2代入即可.
【详解】
解:原式=×
=×
=,
∵x2﹣x﹣2=2,
∴x2=x+2,
∴==2.
x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2
相关试卷
这是一份江苏省南京市十三中2022年中考数学最后一模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份江苏省南京市建邺区2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,二次函数y=等内容,欢迎下载使用。
这是一份2021-2022学年江苏省南京市六区重点名校中考数学四模试卷含解析,共20页。试卷主要包含了已知某几何体的三视图,下列实数中,最小的数是等内容,欢迎下载使用。
