![湖北省孝感市安陆市2022年中考数学仿真试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13531812/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省孝感市安陆市2022年中考数学仿真试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13531812/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省孝感市安陆市2022年中考数学仿真试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13531812/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖北省孝感市安陆市2022年中考数学仿真试卷含解析
展开
这是一份湖北省孝感市安陆市2022年中考数学仿真试卷含解析,共19页。试卷主要包含了在平面直角坐标系中,将点P,计算±的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在解方程-1=时,两边同时乘6,去分母后,正确的是( )
A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30° B.35° C.40° D.50°
3.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
4.下列几何体中,主视图和左视图都是矩形的是( )
A. B. C. D.
5.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
7.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
8.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )
A.1 B.2 C.3 D.4
9.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
10.计算±的值为( )
A.±3 B.±9 C.3 D.9
11.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )
A. B. C. D.
12.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、 表示).
14.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
15.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.
16.分解因式:2x2-8x+8=__________.
17.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.
18.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
20.(6分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
21.(6分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)
22.(8分)列方程或方程组解应用题:
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
23.(8分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
(2)化简:(a﹣)÷ .
24.(10分)解不等式 ,并把它的解集表示在数轴上.
25.(10分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.
26.(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
27.(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分)
中位数(分)
众数(分)
方差(分2)
初中部
a
85
b
s初中2
高中部
85
c
100
160
(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
2、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
3、A
【解析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.
4、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
5、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
6、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
7、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
8、C
【解析】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴,
∴,
∴S△ABC=4,
∴S△BCD= S△ABC- S△ACD=4-1=1.
故选C
考点:相似三角形的判定与性质.
9、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
10、B
【解析】
∵(±9)2=81,
∴±±9.
故选B.
11、A
【解析】
试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.
考点:简单几何体的三视图.
12、D
【解析】
由圆锥的俯视图可快速得出答案.
【详解】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
【点睛】
本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据向量的三角形法则表示出,再根据BC、AD的关系解答.
【详解】
如图,
∵,,
∴=-=-,
∵AD∥BC,BC=2AD,
∴==(-)=-.
故答案为-.
【点睛】
本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.
14、
【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
∴从袋子中随机取出1个球,则它是黑球的概率是:
故答案为:.
【点睛】
本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
15、
【解析】
分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
详解:连接AC,交EF于点M,
∵AE丄EF,EF丄FC,
∴∠E=∠F=90°,
∵∠AME=∠CMF,
∴△AEM∽△CFM,
∴,
∵AE=1,EF=FC=3,
∴,
∴EM=,FM=,
在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
∴AC=AM+CM=5,
在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
∴AB=,即正方形的边长为.
故答案为:.
点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
16、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
【点睛】
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
17、1或﹣1
【解析】
根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.
【详解】
如图:
∵四边形ABCD、HBEO、OECF、GOFD为矩形,
又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,
∴S四边形CEOF=S四边形HAGO=2×3=6,
∴xy=k2+4k+1=6,
解得k=1或k=﹣1.
故答案为1或﹣1.
【点睛】
本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.
18、
【解析】
根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
【详解】
解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
∴tan∠AED=tanB=.
故答案为:.
【点睛】
本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
20、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
【解析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
【详解】
解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
∵点A位于点B的左侧,
∴A(﹣1,0),
∵直线y=x+m经过点A,
∴﹣1+m=0,
解得,m=1,
∴点D的坐标为(0,1),
∴AD==1;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,
y=x1+bx+1=(x+)1+1﹣,
则点C′的坐标为(﹣,1﹣),
∵CC′平行于直线AD,且经过C(0,﹣4),
∴直线CC′的解析式为:y=x﹣4,
∴1﹣=﹣﹣4,
解得,b1=﹣4,b1=6,
∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
【点睛】
本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
21、塔CD的高度为37.9米
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
试题解析:作BE⊥CD于E.
可得Rt△BED和矩形ACEB.
则有CE=AB=16,AC=BE.
在Rt△BED中,∠DBE=45°,DE=BE=AC.
在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
∵16+DE=DC,
∴16+AC=AC,
解得:AC=8+8=DE.
所以塔CD的高度为(8+24)米≈37.9米,
答:塔CD的高度为37.9米.
22、15千米.
【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
【详解】
:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
=4×
解得:x=15,经检验x=15是原方程的解且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
23、(1);(2);
【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
(2)根据分式的减法和除法可以解答本题.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
24、x<5;数轴见解析
【解析】
【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
【详解】移项,得 ,
去分母,得 ,
移项,得,
∴不等式的解集为,
在数轴上表示如图所示:
【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
25、原式=,把x=2代入的原式=1.
【解析】
试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.
试题解析:原式= =
当x=2时,原式=1
26、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
27、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
【解析】
分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
【详解】
详解: (1)初中5名选手的平均分,众数b=85,
高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
故初中部决赛成绩较好;
(3)=70,
∵,
∴初中代表队选手成绩比较稳定.
【点睛】
本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.
相关试卷
这是一份2023-2024学年湖北省孝感市安陆市七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖北省孝感市安陆市、云梦县、孝昌县、大悟县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022届湖北省孝感市孝南区等五校中考数学仿真试卷含解析,共22页。试卷主要包含了下列说法正确的是,下列计算,结果等于a4的是,下列各数中负数是等内容,欢迎下载使用。