2021-2022学年湖北省荆州市中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
2.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
3.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )
A.44 B.45 C.46 D.47
4.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
5.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )
A.2 B.3 C.4 D.6
6.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为( )
A.5 B.6 C.7 D.8
7.已知二次函数的图象如图所示,则下列说法正确的是( )
A.<0 B.<0 C.<0 D.<0
8.若分式在实数范围内有意义,则实数的取值范围是( )
A. B. C. D.
9.已知直线与直线的交点在第一象限,则的取值范围是( )
A. B. C. D.
10.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.
12.因式分解a3-6a2+9a=_____.
13.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.
14.计算:﹣|﹣2|+()﹣1=_____.
15.Rt△ABC中,AD为斜边BC上的高,若, 则 .
16.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.
17.欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需________元.
三、解答题(共7小题,满分69分)
18.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
19.(5分)先化简,再求值:,其中.
20.(8分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
21.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
22.(10分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
23.(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;
①若两次购买鞋子共花费9200元,求第一次的购买数量;
②如何规划两次购买的方案,使所花费用最少,最少多少元?
24.(14分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
2、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
3、A
【解析】
连接正方形的对角线,然后依据正方形的性质进行判断即可.
【详解】
解:如图所示:
∵四边形为正方形,
∴∠1=45°.
∵∠1<∠1.
∴∠1<45°.
故选:A.
【点睛】
本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.
4、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
5、C
【解析】
设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.
故选C.
6、B
【解析】
试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.
∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.
考点:作图—基本作图;含30度角的直角三角形.
7、B
【解析】
根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
【详解】
解:∵抛物线开口向上,
∴a>0,
∵抛物线交于y轴的正半轴,
∴c>0,
∴ac>0,A错误;
∵->0,a>0,
∴b<0,∴B正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,C错误;
当x=1时,y>0,
∴a+b+c>0,D错误;
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
8、D
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由分式有意义的条件可知:,
,
故选:.
【点睛】
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
9、C
【解析】
根据题意画出图形,利用数形结合,即可得出答案.
【详解】
根据题意,画出图形,如图:
当时,两条直线无交点;
当时,两条直线的交点在第一象限.
故选:C.
【点睛】
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
10、C
【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
【点睛】
本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1﹣1
【解析】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.
【详解】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,
根据折叠的性质,△EBF≌△EB′F,
∴EB′⊥B′F,
∴EB′=EB,
∵E是AB边的中点,AB=4,
∴AE=EB′=1,
∵AD=6,
∴DE=,
∴B′D=1﹣1.
【点睛】
本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.
12、a(a-3)2
【解析】
根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.
【详解】
解:
故答案为:.
【点睛】
本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.
13、2,3,1.
【解析】
分析:根据题意得出EF的取值范围,从而得出EF的值.
详解:∵AB=1,∠ABC=60°, ∴BD=1,
当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=1;
当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,
∴EF可能的整数值为2、3、1.
点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.
14、﹣1
【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.
【详解】
原式= -2 -2+3= -1
【点睛】
本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
15、
【解析】
利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
【详解】
如图,
∵∠CAB=90°,且AD⊥BC,
∴∠ADB=90°,
∴∠CAB=∠ADB,且∠B=∠B,
∴△CAB∽△ADB,
∴(AB:BC)1=△ADB:△CAB,
又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
∴AB:BC=1:1.
16、
【解析】
试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:
根据勾股定理得:,
由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,
∴×5BD=4,解得:BD=.
考点:1.网格型问题;2.勾股定理;3.三角形的面积.
17、1
【解析】
设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可.
【详解】
解:设A、B两种商品的售价分别是1件x元和1件y元,
根据题意得,
解得.
所以0.8×(8×50+2×40)=1(元).
即打折后,小敏买50件A商品和40件B商品仅需1元.
故答案为1.
【点睛】
本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
【点睛】
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
19、,
【解析】
先根据完全平方公式进行约分化简,再代入求值即可.
【详解】
原式=-==,将a=+1代入得,原式===,故答案为.
【点睛】
本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.
20、证明见解析
【解析】
试题分析:证明三角形△ABC△DEF,可得=.
试题解析:
证明:∵=,
∴BC=EF,
∵⊥,⊥,
∴∠B=∠E=90°,AC=DF,
∴△ABC△DEF,
∴AB=DE.
21、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
【解析】
【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
(3)根据勾股定理逆定理解答即可.
【详解】(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
即OB2+OA12=A1B2,
所以三角形的形状为等腰直角三角形.
【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
22、(1)50;(2)115.2°;(3).
【解析】
(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.
解:(1)参加本次比赛的学生有:(人)
(2)B等级的学生共有:(人).
∴所占的百分比为:
∴B等级所对应扇形的圆心角度数为:.
(3)列表如下:
男
女1
女2
女3
男
﹣﹣﹣
(女,男)
(女,男)
(女,男)
女1
(男,女)
﹣﹣﹣
(女,女)
(女,女)
女2
(男,女)
(女,女)
﹣﹣﹣
(女,女)
女3
(男,女)
(女,女)
(女,女)
﹣﹣﹣
∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.
∴P(选中1名男生和1名女生).
“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.
23、(1)y=150﹣x; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.
【解析】
(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;
(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.
②把两次的花费与第一次购买的双数用函数表示出来.
【详解】
解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.
故y关于x的函数关系式是y=150﹣x;
(2)①设第一批购买x双,则第二批购买(100﹣x)双.
当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,
解得x1=30,x2=40;
当40<x<1时,则40<100﹣x<1,
则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,
解得x=30或x=70,但40<x<1,所以无解;
答:第一批购买数量为30双或40双.
②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.
当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,
∴x=26时,w有最小值,最小值为9144元;
当40<x<1时,
w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,
∴x=41或59时,w有最小值,最小值为9838元,
综上所述:第一次买26双,第二次买74双最省钱,最少9144元.
【点睛】
考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
24、(1)作图见解析;(2)作图见解析;5π(平方单位).
【解析】
(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
【详解】
解:(1)见图中△A′B′C′
(2)见图中△A″B′C″
扇形的面积(平方单位).
【点睛】
本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.
2023年湖北省荆州市中考数学试卷(含解析): 这是一份2023年湖北省荆州市中考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省广水市达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份湖北省广水市达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列计算正确的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
2021-2022学年焦作市中考数学仿真试卷含解析: 这是一份2021-2022学年焦作市中考数学仿真试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,下列式子成立的有个,点P等内容,欢迎下载使用。