湖南省张家界市永定区民族中学2022年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )
A.11 B.16 C.17 D.16或17
2.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
3.“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
4.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
A.5个 B.4个 C.3个 D.2个
5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是( )
A.﹣10 B.10 C.﹣6 D.2
6.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.下列函数中,y关于x的二次函数是( )
A.y=ax2+bx+c B.y=x(x﹣1)
C.y= D.y=(x﹣1)2﹣x2
8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )
A.60° B.65° C.70° D.75°
9.下列运算正确的是( )
A.(a2)4=a6 B.a2•a3=a6 C. D.
10.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )
A. B. C. D.
11.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为( )
A.2 B.2 C. D.4
12.下列各式计算正确的是( )
A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.
14.如图,在每个小正方形的边长为1的网格中,A,B为格点
(Ⅰ)AB的长等于__
(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的__________________
15.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.
16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
17.方程=1的解是___.
18.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
20.(6分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
21.(6分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
22.(8分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
23.(8分)当=,b=2时,求代数式的值.
24.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
(1)求直线y=kx+m的表达式;
(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.
26.(12分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
27.(12分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.
(1)求证:△AMC∽△EMB;
(2)求EM的长;
(3)求sin∠EOB的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.
故选项D正确.
考点:三角形三边关系;分情况讨论的数学思想
2、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
3、D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.
4、B
【解析】
解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),
∴c=3,a﹣b+c=3.
①∵抛物线的对称轴在y轴右侧,
∴,x>3.
∴a与b异号.
∴ab<3,正确.
②∵抛物线与x轴有两个不同的交点,
∴b3﹣4ac>3.
∵c=3,
∴b3﹣4a>3,即b3>4a.正确.
④∵抛物线开口向下,∴a<3.
∵ab<3,∴b>3.
∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.
③∵a﹣b+c=3,∴a+c=b.
∴a+b+c=3b>3.
∵b<3,c=3,a<3,
∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.
∴3<a+b+c<3,正确.
⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,
由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.
∴当x>﹣3时,y>3的结论错误.
综上所述,正确的结论有①②③④.故选B.
5、D
【解析】
根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.
【详解】
解:根据题意得:
x1+x2=﹣m=2+4,
解得:m=﹣6,
x1•x2=n=2×4,
解得:n=8,
m+n=﹣6+8=2,
故选D.
【点睛】
本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.
6、D
【解析】
根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵直线y=ax+b(a≠0)经过第一,二,四象限,
∴a<0,b>0,
∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
故选D.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
7、B
【解析】
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.
【详解】
A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意;
B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;
C. 的自变量在分母中,不是二次函数,故不符合题意;
D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;
故选B.
【点睛】
本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.
8、C
【解析】
试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
考点:切线的性质、三角形外角的性质、圆的基本性质.
9、C
【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
【详解】
A、原式=a8,所以A选项错误;
B、原式=a5,所以B选项错误;
C、原式= ,所以C选项正确;
D、与不能合并,所以D选项错误.
故选:C.
【点睛】
本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
10、A
【解析】
分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
详解:
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选A.
点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
11、B
【解析】
分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.
详解:
如图所示,连接OC、OB
∵多边形ABCDEF是正六边形,
∴∠BOC=60°,
∵OC=OB,
∴△BOC是等边三角形,
∴∠OBM=60°,
∴OM=OBsin∠OBM=4×=2.
故选B.
点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
12、C
【解析】
根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
【详解】
A.a4•a3=a7,故A错误;
B.3a•4a=12a2,故B错误;
C.(a3)4=a12,故C正确;
D.a12÷a3=a9,故D错误.
故选C.
【点睛】
本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x+x=75.
【解析】
试题解析:设长方形墙砖的长为x厘米,
可得:x+x=75.
14、 取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【解析】
(Ⅰ)利用勾股定理计算即可;
(Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【详解】
解:(Ⅰ)AB= =,
故答案为.
(Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【点睛】
本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.
15、8
【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
【详解】
解:如图,连接OC.
∵AB是⊙O切线,
∴OC⊥AB,AC=BC,
在Rt△ACO中,∵∠ACO=90°,OC=OD=2
tan∠OAB=,
∴,
∴AC=4,
∴AB=2AC=8,
故答案为8
【点睛】
本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
16、1
【解析】
解:3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=1.
故答案为1.
点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
17、x=﹣4
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:3+2x=x﹣1,
解得:x=﹣4,
经检验x=﹣4是分式方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
18、4.4×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
4400000000的小数点向左移动9位得到4.4,
所以4400000000用科学记数法可表示为:4.4×1,
故答案为4.4×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;
(2)根据题意运用t表示出PQ即可;
(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
(3)根据等腰三角形的性质即可得出结论.
【详解】
解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
∴PQ=PR,∠QPR=90°,
∴△QPR为等腰直角三角形.
当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
∵点R与点B重合,
∴AP+PR=t+t=AB=3,
解得:t=.
(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
∵tanA=,
∴tanC=,sinC=,
∴PQ=CP•sinC=(9﹣t).
(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.
∵△KBR∽△QAR,
∴ =,
∴ =,
∴KM=(t﹣3)=t﹣,
∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
②如图2中,当3<t≤3时,重叠部分是四边形PQKB.
S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
③如图3中,当3<t<9时,重叠部分是△PQK.
S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
(3)如图3中,
①当DC=DP1=3时,易知AP1=3,t=3.
②当DC=DP2时,CP2=2•CD•,
∴BP2=,
∴t=3+.
③当CD=CP3时,t=4.
④当CP3=DP3时,CP3=2÷,
∴t=9﹣=.
综上所述,满足条件的t的值为3或或4或.
【点睛】
本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
20、每台电脑0.5万元;每台电子白板1.5万元.
【解析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
【详解】
设每台电脑x万元,每台电子白板y万元.
根据题意,得:
解得,
答:每台电脑0.5万元,每台电子白板1.5万元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
21、旗杆AB的高为(4+1)m.
【解析】
试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.
试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.
在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.
∵BD=8,∴DF=4,BF=.
∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.
在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).
答:旗杆AB的高为(4+1)m.
22、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
23、,6﹣3.
【解析】
原式=
=,
当a=,b=2时,
原式.
24、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
(1)根据函数图像判断即可;
(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
【详解】
(1)∵点A(m,3),B(-6,n)在双曲线y=上,
∴m=1,n=-1,
∴A(1,3),B(-6,-1).
将(1,3),B(-6,-1)带入y=kx+b,
得:,解得,.
∴直线的解析式为y=x+1.
(1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
(3)当y=x+1=0时,x=-4,
∴点C(-4,0).
设点P的坐标为(x,0),如图,
∵S△ACP=S△BOC,A(1,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
解得:x1=-6,x1=-1.
∴点P的坐标为(-6,0)或(-1,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
25、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).
【解析】
(1)将A代入反比例函数中求出m的值,即可求出直线解析式,
(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.
【详解】
解:(1)∵点A(m,2)在双曲线上,
∴m=﹣1,
∴A(﹣1,2),直线y=kx﹣1,
∵点A(﹣1,2)在直线y=kx﹣1上,
∴y=﹣3x﹣1.
(2) ,解得或,
∴B(,﹣3),
∴AB==,设P(n,0),
则有(n﹣)2+32=
解得n=5或,
∴P1(5,0),P2(,0).
【点睛】
本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.
26、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
27、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.
【解析】
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
【详解】
(1)证明:连接AC、EB,如图1,
∵∠A=∠BEC,∠B=∠ACM,
∴△AMC∽△EMB;
(2)解:∵DC是⊙O的直径,
∴∠DEC=90°,
∴DE2+EC2=DC2,
∵DE=,CD=8,且EC为正数,
∴EC=7,
∵M为OB的中点,
∴BM=2,AM=6,
∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,
∴EM=4;
(3)解:过点E作EF⊥AB,垂足为点F,如图2,
∵OE=4,EM=4,
∴OE=EM,
∴OF=FM=1,
∴EF=,
∴sin∠EOB=.
【点睛】
本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.
湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析: 这是一份湖南省张家界市永定区民族中学2021-2022学年十校联考最后数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
湖南省长沙广益中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份湖南省长沙广益中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了分式有意义,则x的取值范围是,如图,AB∥CD,那么等内容,欢迎下载使用。
湖南省张家界市名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份湖南省张家界市名校2022年初中数学毕业考试模拟冲刺卷含解析,共29页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列解方程去分母正确的是,下列运算结果正确的是等内容,欢迎下载使用。