吉林省东北师范大附属中学2021-2022学年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )
A.40° B.60° C.80° D.100°
2.若a+|a|=0,则等于( )
A.2﹣2a B.2a﹣2 C.﹣2 D.2
3.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
4.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0
5.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是( )
A.﹣3 B.0 C. D.﹣1
6.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )
A. B. C. D.
7.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣ B.1 C. D.﹣l
8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
9.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
10.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )
A.2 B.3 C.4 D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:|﹣3|+(﹣1)2= .
12.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级 | 平均分 | 中位数 | 方差 |
甲班 | |||
乙班 |
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号
13.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.
14.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.
15.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.
16.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____
三、解答题(共8题,共72分)
17.(8分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
18.(8分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
19.(8分)计算:.
20.(8分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
(1)求直线y=kx+m的表达式;
(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.
21.(8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)
22.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.
23.(12分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
(1)求证:AM=FM;
(2)若∠AMD=a.求证:=cosα.
24.如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵l1∥l2,
∴∠3=∠1=60°,
∴∠2=∠A+∠3=40°+60°=100°.
故选D.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
2、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
∵a+|a|=0,
∴|a|=-a,
则a≤0,
故原式=2-a-a=2-2a.
故选A.
【点睛】
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
3、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
4、C
【解析】
根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.
【详解】
∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,
∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,
∴k>﹣1,
∵抛物线y=kx2﹣2x﹣1为二次函数,
∴k≠0,
则k的取值范围为k>﹣1且k≠0,
故选C.
【点睛】
本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.
5、B
【解析】
|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
∵3>2>>1>0,
∴绝对值最小的数是0,
故选:B.
6、A
【解析】
由题意可得:△APE和△PCF都是等腰直角三角形.
∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.
则y=2x,为正比例函数.
故选A.
7、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
8、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
9、A
【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
由图可得,∠CDE=40° ,∠C=90°,
∴∠CED=50°,
又∵DE∥AF,
∴∠CAF=50°,
∵∠BAC=60°,
∴∠BAF=60°−50°=10°,
故选A.
【点睛】
本题考查了平行线的性质,熟练掌握这一点是解题的关键.
10、C
【解析】
设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4.
【解析】
|﹣3|+(﹣1)2=4,
故答案为4.
12、
【解析】
根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
【详解】
解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
故正确;
∵甲班的中位数是95.5分,乙班的中位数是90.5分,
甲班学生中数学成绩95分及以上的人数多,
故错误;
∵甲班的方差是41.25分,乙班的方差是36.06分,
甲班的方差大于乙班的方差,
乙班学生的数学成绩比较整齐,分化较小;
故正确;
上述评估中,正确的是;
故答案为:.
【点睛】
本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
13、 (1,0)
【解析】
分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.
详解:
如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.
若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
可知△CDE的周长最小,
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D′O=DO=2,D′B=6,
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BC,有
∴OE=1,
∴点E的坐标为(1,0).
故答案为:(1,0).
点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.
14、2
【解析】
凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
【详解】
解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.
∵六边形ABCDEF的六个角都是110°,
∴六边形ABCDEF的每一个外角的度数都是60°.
∴△AHF、△BGC、△DPE、△GHP都是等边三角形.
∴GC=BC=3,DP=DE=1.
∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.
∴六边形的周长为1+3+3+1+4+1=2.
故答案为2.
【点睛】
本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
15、
【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:如图,连接AC、CF、GE,CF和GE相交于O点
∵在菱形ABCD中, ,BC=1,
∴,AC=1,
∴
∵在菱形CEFG中,是它的对角线,
∴,
∴,
∴
∵==,
∴在,
又∵H是AF的中点
∴.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
16、115°
【解析】
根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到结论.
【详解】
∵∠ABC=50°,
∴∠BAC+∠ACB=130°,
∵若M在PA的中垂线上,N在PC的中垂线上,
∴AM=PM,PN=CN,
∴∠MAP=∠APM,∠CPN=∠PCN,
∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,
∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,
∴∠APC=115°,
故答案为:115°
【点睛】
本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.
三、解答题(共8题,共72分)
17、(1);(2)这个游戏不公平,理由见解析.
【解析】
(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.
【详解】
解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,
故从袋中随机摸出一球,标号是1的概率为:;
(2)这个游戏不公平.
画树状图得:
∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,
∴P(甲胜)=,P(乙胜)=.
∴P(甲胜)≠P(乙胜),
故这个游戏不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
18、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
【解析】
分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
详解:(2)解:由题意:.
∵,
∴原方程有两个不相等的实数根.
(2)答案不唯一,满足()即可,例如:
解:令,,则原方程为,
解得:.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
19、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
20、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).
【解析】
(1)将A代入反比例函数中求出m的值,即可求出直线解析式,
(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.
【详解】
解:(1)∵点A(m,2)在双曲线上,
∴m=﹣1,
∴A(﹣1,2),直线y=kx﹣1,
∵点A(﹣1,2)在直线y=kx﹣1上,
∴y=﹣3x﹣1.
(2) ,解得或,
∴B(,﹣3),
∴AB==,设P(n,0),
则有(n﹣)2+32=
解得n=5或,
∴P1(5,0),P2(,0).
【点睛】
本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.
21、凉亭P到公路l的距离为273.2m.
【解析】
分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.
【详解】
详解:作PD⊥AB于D.
设BD=x,则AD=x+1.
∵∠EAP=60°,
∴∠PAB=90°﹣60°=30°.
在Rt△BPD中,
∵∠FBP=45°,
∴∠PBD=∠BPD=45°,
∴PD=DB=x.
在Rt△APD中,
∵∠PAB=30°,
∴PD=tan30°•AD,
即DB=PD=tan30°•AD=x=(1+x),
解得:x≈273.2,
∴PD=273.2.
答:凉亭P到公路l的距离为273.2m.
【点睛】
此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
22、证明见解析.
【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.
(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
【详解】
证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.
又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.
∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,
∴△AFE≌△BCA(HL).∴AC=EF.
(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.
∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.
∵AC=EF,AC=AD,∴EF=AD.
∴四边形ADFE是平行四边形.
考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.
23、(1)见解析;(2)见解析.
【解析】
(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
【详解】
(1)由旋转性质可知:
CD=CG且∠DCG=90°,
∴∠DGC=45°从而∠DGF=45°,
∵∠EFG=90°,
∴HF=FG=AD
又由旋转可知,AD∥EF,
∴∠DAM=∠HFM,
又∵∠DMA=∠HMF,
∴△ADM≌△FHM
∴AM=FM
(2)作FN⊥DG垂足为N
∵△ADM≌△MFH
∴DM=MH,AM=MF=AF
∵FH=FG,FN⊥HG
∴HN=NG
∵DG=DM+HM+HN+NG=2(MH+HN)
∴MN=DG
∵cos∠FMG=
∴cos∠AMD=
∴=cosα
【点睛】
本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
24、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【解析】
如图,作于M,于则,设想办法构建方程即可解决问题.
求出AC,AD,分两种情形解决问题即可.
【详解】
解:如图,作于M,于则,设.
在中,,
在中,,
,
,
,
的长为50m.
由可知:,
,,
,,
冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【点睛】
考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
吉林省长春市东北师范大附属中学2022年中考一模数学试题含解析: 这是一份吉林省长春市东北师范大附属中学2022年中考一模数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
吉林省东北师范大附属中学2022年中考适应性考试数学试题含解析: 这是一份吉林省东北师范大附属中学2022年中考适应性考试数学试题含解析,共17页。试卷主要包含了答题时请按要求用笔,若二元一次方程组的解为则的值为,已知等内容,欢迎下载使用。
2022年吉林省长春市东北师范大附属中学中考数学模拟试题含解析: 这是一份2022年吉林省长春市东北师范大附属中学中考数学模拟试题含解析,共24页。试卷主要包含了已知抛物线y=x2-2mx-4等内容,欢迎下载使用。