黑龙江省牡丹江管理局2021-2022学年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列调查中适宜采用抽样方式的是( )
A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况
C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命
2.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
3.不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B. C. D.
4.的相反数是( )
A. B.﹣ C.﹣ D.
5.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
6.估计﹣1的值在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
8.方程的解为( )
A.x=4 B.x=﹣3 C.x=6 D.此方程无解
9.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
10.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
二、填空题(共7小题,每小题3分,满分21分)
11.已知∠=32°,则∠的余角是_____°.
12.计算:________.
13.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
15.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
16.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.
17.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.
三、解答题(共7小题,满分69分)
18.(10分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
19.(5分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.
20.(8分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
21.(10分)计算:﹣4cos45°+()﹣1+|﹣2|.
22.(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
23.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
24.(14分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据全面调查与抽样调查的特点对各选项进行判断.
【详解】
解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.
故选:D.
【点睛】
本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
2、C
【解析】
解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
故选C.
【点睛】
本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
3、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
4、B
【解析】
一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.
【详解】
解:的相反数是﹣.
故选:B.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
5、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
6、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
7、D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
8、C
【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
【详解】
方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
【点睛】
本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
9、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
10、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
二、填空题(共7小题,每小题3分,满分21分)
11、58°
【解析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
【详解】
解:∠α的余角是:90°-32°=58°.
故答案为58°.
【点睛】
本题考查余角,解题关键是掌握互为余角的两个角的和为90度.
12、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
13、1 或 0 或
【解析】
分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
【详解】
解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
(2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
于是△=4﹣4(m﹣1)m>0,
解得,(m﹣)2<,
解得 m< 或 m> .
将(0,0)代入解析式得,m=0,符合题意.
(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
这时:△=4﹣4(m﹣1)m=0,
解得:m= .
故答案为1 或 0 或.
【点睛】
此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
14、
【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
【详解】
解:所有可能的结果如下表:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
所以其概率为挑选的两位教师恰好是一男一女的概率为=,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
15、
【解析】
首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
【详解】
∵,,
∴=-=-,
∵BD=2CD,
∴==,
∴=+==.
故答案为.
16、50°
【解析】
延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
【详解】
延长BF交CD于G
由折叠知,
BE=CF, ∠1=∠2, ∠7=∠8,
∴∠3=∠4.
∵∠1+∠2=∠3+∠4,
∴∠1=∠2=∠3=∠4,
∵CD∥AB,
∴∠3=∠5,
∴∠1=∠5,
在△BCG和△DAE中
∵∠1=∠5,
∠C=∠A,
BC=AD,
∴△BCG≌△DAE,
∴∠7=∠6=25°,
∴∠8=∠7=25°,
∴FDA=50°.
故答案为50°.
【点睛】
本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
17、1.
【解析】
求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
【详解】
解:∵四边形ABCD是菱形,
∴AD=AB,
∵cosA=,BE=4,DE⊥AB,
∴设AD=AB=5x,AE=3x,
则5x﹣3x=4,
x=1,
即AD=10,AE=6,
在Rt△ADE中,由勾股定理得:
在Rt△BDE中,
故答案为:1.
【点睛】
本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
三、解答题(共7小题,满分69分)
18、(1)25, 90°;
(2)见解析;
(3)该市 “活动时间不少于5天”的大约有1.
【解析】
试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;
(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;
(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.
(1)由图可得
该扇形圆心角的度数为90°;
(2)“活动时间为6天” 的人数,如图所示:
(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1
∴该市“活动时间不少于5天”的大约有1人.
考点:统计的应用
点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.
19、(1)1600千米;(2)1
【解析】
试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;
(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.
试题解析:
(1)设原时速为xkm/h,通车后里程为ykm,则有:
,
解得: .
答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
(2)由题意可得出:(80+120)(1﹣m%)(8+m%)=1600,
解得:m1=1,m2=0(不合题意舍去),
答:m的值为1.
20、-2,-1,0,1
【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;
解不等式x≤2-x得x≤1.则这两个不等式解集的公共部分为 ,
因为x取整数,则x取-2,-1,0,1.
故答案为-2,-1,0,1
【点睛】
本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).
21、4
【解析】
分析:
代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.
详解:
原式=.
点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.
22、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
【点睛】
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
23、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
黑龙江省庆安县重点达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份黑龙江省庆安县重点达标名校2021-2022学年中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。
黑龙江省哈尔滨市达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份黑龙江省哈尔滨市达标名校2021-2022学年中考押题数学预测卷含解析,共19页。试卷主要包含了若关于x的一元二次方程x,计算4×的结果等于等内容,欢迎下载使用。
2022年黑龙江省牡丹江管理局北斗星协会达标名校中考数学猜题卷含解析: 这是一份2022年黑龙江省牡丹江管理局北斗星协会达标名校中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。