终身会员
搜索
    上传资料 赚现金

    河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析

    立即下载
    加入资料篮
    河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析第1页
    河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析第2页
    河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份河南省新乡市一中教育集团达标名校2022年中考数学最后冲刺模拟试卷含解析,共28页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )

    A.75° B.60° C.45° D.30°
    2.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
    A.; B.; C.; D..
    3.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是(  )

    A. B. C. D.
    4.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
    A.205万 B. C. D.
    5.下列运算正确的是( )
    A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b6
    6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是(  )
    A.①② B.②③ C.①③ D.①②③
    7.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
    A. B. C. D.
    8.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
    A. B. C. D.
    9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是(  )

    百合花
    玫瑰花
    小华
    6支
    5支
    小红
    8支
    3支
    A.2支百合花比2支玫瑰花多8元
    B.2支百合花比2支玫瑰花少8元
    C.14支百合花比8支玫瑰花多8元
    D.14支百合花比8支玫瑰花少8元
    10.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

    A. B. C. D.
    11.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为

    A.6 B. C. D.3
    12.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是(  )

    A.9.5 B.13.5 C.14.5 D.17
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为 (n为正整数).
    14.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.
    15.如果m,n互为相反数,那么|m+n﹣2016|=___________.
    16.二次函数中的自变量与函数值的部分对应值如下表:




















    则的解为________.
    17.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

    18.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
    (1)求证:PC是⊙O的切线;
    (2)设OP=AC,求∠CPO的正弦值;
    (3)设AC=9,AB=15,求d+f的取值范围.

    20.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    21.(6分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.

    22.(8分)解方程:3x2﹣2x﹣2=1.
    23.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
    (1)求抛物线解析式;
    (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
    (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.

    24.(10分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
    25.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
    A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
    某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
    26.(12分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.

    (1)①若点在直线上,则点的“理想值”等于_______;
    ②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
    (2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
    (3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
    27.(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
    【详解】
    将圆补充完整,找出点E的位置,如图所示.

    ∵弧AD所对的圆周角为∠ACD、∠AEC,
    ∴图中所标点E符合题意.
    ∵四边形∠CMEN为菱形,且∠CME=60°,
    ∴△CME为等边三角形,
    ∴∠AEC=60°.
    故选B.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
    2、A
    【解析】
    分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
    详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
    点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
    3、B
    【解析】
    首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
    【详解】
    ∵四边形ABCD为正方形,
    ∴BA=AD,∠BAD=90°,
    ∵DE⊥AM于点E,BF⊥AM于点F,
    ∴∠AFB=90°,∠DEA=90°,
    ∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
    ∴∠ABF=∠EAD,
    在△ABF和△DEA中

    ∴△ABF≌△DEA(AAS),
    ∴BF=AE;
    设AE=x,则BF=x,DE=AF=1,
    ∵四边形ABED的面积为6,
    ∴,解得x1=3,x2=﹣4(舍去),
    ∴EF=x﹣1=2,
    在Rt△BEF中,,
    ∴.
    故选B.
    【点睛】
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
    4、C
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】2 050 000将小数点向左移6位得到2.05,
    所以2 050 000用科学记数法表示为:20.5×106,
    故选C.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、D
    【解析】
    根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、a2•a4=a6,故此选项错误;
    B、2a2+a2=3a2,故此选项错误;
    C、a6÷a2=a4,故此选项错误;
    D、(ab2)3=a3b6,故此选项正确..
    故选D.
    考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.
    6、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    7、D
    【解析】
    A选项:

    ∠1+∠2=360°-90°×2=180°;
    B选项:

    ∵∠2+∠3=90°,∠3+∠4=90°,
    ∴∠2=∠4,
    ∵∠1+∠4=180°,
    ∴∠1+∠2=180°;
    C选项:

    ∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
    ∵∠1+∠EFC=180°,∴∠1+∠2=180°;
    D选项:∠1和∠2不一定互补.
    故选D.
    点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
    8、D
    【解析】
    根据中心对称图形的定义解答即可.
    【详解】
    选项A不是中心对称图形;
    选项B不是中心对称图形;
    选项C不是中心对称图形;
    选项D是中心对称图形.
    故选D.
    【点睛】
    本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
    9、A
    【解析】
    设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.
    【详解】
    设每支百合花x元,每支玫瑰花y元,根据题意得:
    8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,
    ∴2支百合花比2支玫瑰花多8元.
    故选:A.
    【点睛】
    考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
    10、B
    【解析】
    过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
    【详解】
    过F作FH⊥AD于H,交ED于O,则FH=AB=1.
    ∵BF=1FC,BC=AD=3,
    ∴BF=AH=1,FC=HD=1,
    ∴AF===,
    ∵OH∥AE,
    ∴=,
    ∴OH=AE=,
    ∴OF=FH﹣OH=1﹣=,
    ∵AE∥FO,∴△AME∽△FMO,
    ∴=,∴AM=AF=,
    ∵AD∥BF,∴△AND∽△FNB,
    ∴=,
    ∴AN=AF=,
    ∴MN=AN﹣AM=﹣=,故选B.

    【点睛】
    构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
    11、D
    【解析】
    解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
    故选D.
    【点睛】
    本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
    12、B
    【解析】
    由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,
    ∴DE=AC=4.1,DF=BC=4,EF=AB=1,
    ∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.
    故选B.
    【点睛】
    考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    寻找规律: 由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,
    ∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且
    A2B2=OA2=OB1=OA1;
    A3B3=OA3=OB2=OA2=OA1;
    A4B4=OA4=OB3=OA3=OA1;
    ……

    又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.
    14、2
    【解析】
    【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
    【详解】∵3※x=3x﹣3+x﹣2<2,
    ∴x<,
    ∵x为正整数,
    ∴x=2,
    故答案为:2.
    【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
    15、1.
    【解析】
    试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
    考点:1.绝对值的意义;2.相反数的性质.
    16、或
    【解析】
    由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.
    【详解】
    解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),
    ∴此抛物线的对称轴为:直线x=-,
    ∵此抛物线过点(1,0),
    ∴此抛物线与x轴的另一个交点为:(-2,0),
    ∴ax2+bx+c=0的解为:x=-2或1.
    故答案为x=-2或1.
    【点睛】
    此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.
    17、①③④
    【解析】
    ①根据直角三角形斜边上的中线等于斜边的一半可判断①;
    ②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
    ③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
    ④当∠ABC=45°时,∠BCN=45°,进而判断④.
    【详解】
    ①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
    ∴PM=BC,PN=BC,
    ∴PM=PN,正确;
    ②在△ABM与△ACN中,
    ∵∠A=∠A,∠AMB=∠ANC=90°,
    ∴△ABM∽△ACN,
    ∴,错误;
    ③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
    ∴∠ABM=∠ACN=30°,
    在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
    ∵点P是BC的中点,BM⊥AC,CN⊥AB,
    ∴PM=PN=PB=PC,
    ∴∠BPN=2∠BCN,∠CPM=2∠CBM,
    ∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
    ∴∠MPN=60°,
    ∴△PMN是等边三角形,正确;
    ④当∠ABC=45°时,∵CN⊥AB于点N,
    ∴∠BNC=90°,∠BCN=45°,
    ∵P为BC中点,可得BC=PB=PC,故④正确.
    所以正确的选项有:①③④
    故答案为①③④
    【点睛】
    本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
    18、-9.
    【解析】
    根据题中给出的运算法则按照顺序求解即可.
    【详解】
    解:根据题意,得:,.
    故答案为:-9.
    【点睛】
    本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2);(3)
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
    (2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
    (3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
    【详解】
    (1)连接OC,

    ∵OA=OC,
    ∴∠A=∠OCA,
    ∵AC∥OP,
    ∴∠A=∠BOP,∠ACO=∠COP,
    ∴∠COP=∠BOP,
    ∵PB是⊙O的切线,AB是⊙O的直径,
    ∴∠OBP=90°,
    在△POC与△POB中,

    ∴△COP≌△BOP,
    ∴∠OCP=∠OBP=90°,
    ∴PC是⊙O的切线;
    (2)过O作OD⊥AC于D,
    ∴∠ODC=∠OCP=90°,CD=AC,
    ∵∠DCO=∠COP,
    ∴△ODC∽△PCO,
    ∴,
    ∴CD•OP=OC2,
    ∵OP=AC,
    ∴AC=OP,
    ∴CD=OP,
    ∴OP•OP=OC2
    ∴,
    ∴sin∠CPO=;
    (3)连接BC,
    ∵AB是⊙O的直径,
    ∴AC⊥BC,
    ∵AC=9,AB=1,
    ∴BC==12,
    当CM⊥AB时,
    d=AM,f=BM,
    ∴d+f=AM+BM=1,
    当M与B重合时,
    d=9,f=0,
    ∴d+f=9,
    ∴d+f的取值范围是:9≤d+f≤1.
    【点睛】
    本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
    20、200名;见解析;;(4)375.
    【解析】
    根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
    根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
    根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
    根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
    【详解】
    解:,
    答:此次抽样调查中,共调查了200名学生;
    反对的人数为:,
    补全的条形统计图如右图所示;
    扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
    (4),
    答:该校1500名学生中有375名学生持“无所谓”意见.
    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,

    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    22、
    【解析】
    先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.
    【详解】
    解:x= =

    ∴原方程的解为.
    【点睛】
    本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
    23、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
    【解析】
    (1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
    【详解】
    (1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
    解得:a=,b=1,c=﹣
    ∴抛物线解析式:y=x2+x﹣
    (2)存在.
    ∵y=x2+x﹣=(x+1)2﹣2
    ∴P点坐标为(﹣1,﹣2)
    ∵△ABP的面积等于△ABE的面积,
    ∴点E到AB的距离等于2,
    设E(a,2),
    ∴a2+a﹣=2
    解得a1=﹣1﹣2,a2=﹣1+2
    ∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
    (3)∵点A(﹣3,0),点B(1,0),
    ∴AB=4
    若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
    ∴AB∥PF,AB=PF=4
    ∵点P坐标(﹣1,﹣2)
    ∴点F坐标为(3,﹣2),(﹣5,﹣2)
    ∴平行四边形的面积=4×2=1
    若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
    ∴AB与PF互相平分
    设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
    ∴ ,
    ∴x=﹣1,y=2
    ∴点F(﹣1,2)
    ∴平行四边形的面积=×4×4=1
    综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
    【点睛】
    本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
    24、1千米/时
    【解析】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.
    【详解】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,
    根据题意得:6(20﹣x)=1(20+x),
    解得:x=1.
    答:水流的速度是1千米/时.
    【点睛】
    本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.
    25、 (1)600人(2)
    【解析】
    (1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
    (2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
    【详解】
    (1)(人),∴最喜欢方式A的有600人
    (2)列表法:

    A
    B
    C
    A
    A,A
    A,B
    A,C
    B
    B,A
    B,B
    B,C
    C
    C,A
    C,B
    C,C
    树状法:

    ∴(同一种购票方式)
    【点睛】
    本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    26、(1)①﹣3;②;(2);(3)
    【解析】
    (1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
    【详解】
    (1)①∵点在直线上,
    ∴,
    ∴点的“理想值”=-3,
    故答案为:﹣3.
    ②当点在与轴切点时,点的“理想值”最小为0.
    当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
    设点Q(x,y),与x轴切于A,与OQ切于Q,
    ∵C(,1),
    ∴tan∠COA==,
    ∴∠COA=30°,
    ∵OQ、OA是的切线,
    ∴∠QOA=2∠COA=60°,
    ∴=tan∠QOA=tan60°=,
    ∴点的“理想值”为,

    故答案为:.
    (2)设直线与轴、轴的交点分别为点,点,
    当x=0时,y=3,
    当y=0时,x+3=0,解得:x=,
    ∴,.
    ∴,,
    ∴tan∠OAB=,
    ∴.
    ∵,
    ∴①如图,作直线.
    当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
    作轴于点,
    ∴,
    ∴.
    ∵的半径为1,
    ∴.
    ∴,
    ∴.
    ∴.

    ②如图
    当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
    作轴于点,则.
    设直线与直线的交点为.
    ∵直线中,k=,
    ∴,
    ∴,点F与Q重合,
    则.
    ∵的半径为1,
    ∴.
    ∴.
    ∴,
    ∴.
    ∴.

    由①②可得,的取值范围是.
    (3)∵M(2,m),
    ∴M点在直线x=2上,
    ∵,
    ∴LQ取最大值时,=,
    ∴作直线y=x,与x=2交于点N,
    当M与ON和x轴同时相切时,半径r最大,
    根据题意作图如下:M与ON相切于Q,与x轴相切于E,
    把x=2代入y=x得:y=4,
    ∴NE=4,OE=2,ON==6,
    ∴∠MQN=∠NEO=90°,
    又∵∠ONE=∠MNQ,
    ∴,
    ∴,即,
    解得:r=.
    ∴最大半径为.

    【点睛】
    本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.
    27、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.

    相关试卷

    内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析:

    这是一份内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列实数中,结果最大的是等内容,欢迎下载使用。

    河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。

    2022年河北省石家庄市28中学教育集团达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年河北省石家庄市28中学教育集团达标名校中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map