|试卷下载
搜索
    上传资料 赚现金
    河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析01
    河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析02
    河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析

    展开
    这是一份河北省唐山市古冶区重点中学2022年十校联考最后数学试题含解析,共26页。试卷主要包含了答题时请按要求用笔,计算6m3÷的结果是,﹣2018的相反数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.sin45°的值等于(  )
    A. B.1 C. D.
    2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
    A.120元 B.100元 C.80元 D.60元
    3.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    4.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    5.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )

    A.x<-2或x>2 B.x<-2或0<x<2
    C.-2<x<0或0<x<2 D.-2<x<0或x>2
    6.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是(  )

    A.①②③ B.①②④ C.①③④ D.①②③④
    7.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    8.关于x的不等式组无解,那么m的取值范围为( )
    A.m≤-1 B.m<-1 C.-1 9.﹣2018的相反数是(  )
    A.﹣2018 B.2018 C.±2018 D.﹣
    10.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=(  )

    A.35° B.60° C.70° D.70°或120°
    11.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是(  )
    A. B. C. D.
    12.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.

    14.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.

    15.三角形的每条边的长都是方程的根,则三角形的周长是 .
    16.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.

    17.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.

    18.π﹣3的绝对值是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
    (1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
    (2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
    20.(6分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.
    21.(6分)阅读材料,解答下列问题:
    神奇的等式
    当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:
    ()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…
    (1)特例验证:
    请再写出一个具有上述特征的等式:   ;
    (2)猜想结论:
    用n(n为正整数)表示分数的分母,上述等式可表示为:   ;
    (3)证明推广:
    ①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;
    ②等式()2+=+()2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.
    22.(8分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    23.(8分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    24.(10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
    类型
    价格
    进价(元/盏)
    售价(元/盏)
    A型
    30
    45
    B型
    50
    70
    (1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
    (2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
    (3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
    25.(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.

    (I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;
    (II)如图②,当α=60°时,求点C′的坐标;
    (III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).
    26.(12分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,

    (1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;
    (2)如图,当点B为的中点时,求点A、D之间的距离:
    (3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.
    27.(12分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
    (1)求证:四边形ABCD是矩形;
    (1)若△GEF的面积为1.
    ①求四边形BCFE的面积;
    ②四边形ABCD的面积为   .




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
    2、C
    【解析】
    解:设该商品的进价为x元/件,
    依题意得:(x+20)÷=200,解得:x=1.
    ∴该商品的进价为1元/件.
    故选C.
    3、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    4、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    5、D
    【解析】
    先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
    【详解】
    解:∵反比例函数与正比例函数的图象均关于原点对称,
    ∴A、B两点关于原点对称,
    ∵点A的横坐标为1,∴点B的横坐标为-1,
    ∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
    ∴当y1>y1时,x的取值范围是-1<x<0或x>1.
    故选:D.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
    6、D
    【解析】
    根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
    【详解】
    E点有4中情况,分四种情况讨论如下:
    由AB∥CD,可得∠AOC=∠DCE1=β
    ∵∠AOC=∠BAE1+∠AE1C,
    ∴∠AE1C=β-α
    过点E2作AB的平行线,由AB∥CD,
    可得∠1=∠BAE2=α,∠2=∠DCE2=β
    ∴∠AE2C=α+β
    由AB∥CD,可得∠BOE3=∠DCE3=β
    ∵∠BAE3=∠BOE3+∠AE3C,
    ∴∠AE3C=α-β
    由AB∥CD,可得
    ∠BAE4+∠AE4C+∠DCE4=360°,
    ∴∠AE4C=360°-α-β
    ∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.

    【点睛】
    此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
    7、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    8、A
    【解析】
    【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.
    【详解】,
    解不等式①得:x 解不等式②得:x>-1,
    由于原不等式组无解,所以m≤-1,
    故选A.
    【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
    9、B
    【解析】
    分析:只有符号不同的两个数叫做互为相反数.
    详解:-1的相反数是1.
    故选:B.
    点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    10、D
    【解析】
    ①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
    【详解】

    ①当点B落在AB边上时,
    ∵,
    ∴,
    ∴,
    ②当点B落在AC上时,
    在中,
    ∵∠C=90°, ,
    ∴,
    ∴,
    故选D.
    【点睛】
    本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.
    11、A
    【解析】
    根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
    【详解】
    选项A,是轴对称图形,不是中心对称图形,故可以选;
    选项B,是轴对称图形,也是中心对称图形,故不可以选;
    选项C,不是轴对称图形,是中心对称图形,故不可以选;
    选项D,是轴对称图形,也是中心对称图形,故不可以选.
    故选A
    【点睛】
    本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
    错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

    12、C
    【解析】
    试题分析:由题意可得BQ=x.
    ①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
    ②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
    ③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
    故选C.
    考点:动点问题的函数图象.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
    【详解】
    解:由直线a∥b∥c,根据平行线分线段成比例定理,
    即可得,
    又由AC=3,CE=5,DF=4
    可得:
    解得:BD=.
    故答案为.
    【点睛】
    此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
    14、CD的中点
    【解析】
    根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
    【详解】
    ∵△ADE旋转后能与△BEC重合,
    ∴△ADE≌△BEC,
    ∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
    ∴∠AED+∠BEC=90°,
    ∴∠DEC=90°,
    ∴△DEC是等腰直角三角形,
    ∴D与E,E与C是对应顶点,
    ∵CD的中点到D,E,C三点的距离相等,
    ∴旋转中心是CD的中点,
    故答案为:CD的中点.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
    15、6或2或12
    【解析】
    首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
    【详解】
    由方程,得=2或1.
    当三角形的三边是2,2,2时,则周长是6;
    当三角形的三边是1,1,1时,则周长是12;
    当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
    当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
    综上所述此三角形的周长是6或12或2.
    16、(7+6)
    【解析】
    过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
    【详解】
    解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

    ∵坝顶部宽为2m,坝高为6m,
    ∴DC=EF=2m,EC=DF=6m,
    ∵α=30°,
    ∴BE= (m),
    ∵背水坡的坡比为1.2:1,
    ∴,
    解得:AF=5(m),
    则AB=AF+EF+BE=5+2+6=(7+6)m,
    故答案为(7+6)m.
    【点睛】
    本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
    17、
    【解析】
    E、F分别是BC、AC的中点.

    ∠CAB=26°



    ∠CAD =26°





    !
    18、π﹣1.
    【解析】
    根据绝对值的性质即可解答.
    【详解】
    π﹣1的绝对值是π﹣1.
    故答案为π﹣1.
    【点睛】
    本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1) ; (2) .
    【解析】
    (1)根据概率=所求情况数与总情况数之比代入解得即可.
    (2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
    【详解】
    (1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
    (2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):

    由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
    【点睛】
    本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.
    20、40%
    【解析】
    先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.
    【详解】
    第一次降价的百分率为x,则第二次降价的百分率为2x,
    根据题意得:500(1﹣x)(1﹣2x)=240,
    解得x1=0.2=20%,x2=1.3=130%.
    则第一次降价的百分率为20%,第二次降价的百分率为40%.
    【点睛】
    本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.
    21、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由见解析;②成立,理由见解析.
    【解析】
    (1)根据题目中的等式列出相同特征的等式即可;
    (1)根据题意找出等式特征并用n表达即可;
    (3)①先后证明左右两边的等式的结果,如果结果相同则成立;
    ②先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.
    【详解】
    解:(1)具有上述特征的等式可以是()1+=+()1,
    故答案为()1+=+()1;
    (1)上述等式可表示为()1+=+()1,
    故答案为()1+=+()1;
    (3)①等式成立,
    证明:∵左边=()1+=+=,
    右边=+()1=,
    ∴左边=右边,
    ∴等式成立;
    ②此等式也成立,例如:()1+=+()1.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.
    22、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    23、(1)5;(2)﹣2≤x<﹣.
    【解析】
    (1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
    (2)先求出两个不等式的解集,再找出解集的公共部分即可.
    【详解】
    (1)原式

    =5;
    (2)解不等式①得,x≥﹣2,
    解不等式②得,
    所以不等式组的解集是
    用数轴表示为:

    【点睛】
    本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
    24、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【解析】
    (1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
    (2)根据题意列出方程即可;
    (3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
    【详解】
    解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利P元,
    则P=(45﹣30)m+(70﹣50)(100﹣m),
    =15m+2000﹣20m,
    =﹣5m+2000,
    即P=﹣5m+2000,
    (3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
    ∴100﹣m≤4m,
    ∴m≥20,
    ∵k=﹣5<0,P随m的增大而减小,
    ∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
    答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【点睛】
    本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.
    25、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②
    C′(,﹣)
    【解析】
    (I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;
    (II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;
    (III)分两种情形分别求解即可解决问题;
    【详解】
    解:(I)如图①,

    ∵A(8,0),B(0,4),
    ∴OB=4,OA=8,
    ∵AC=OC=AC′=4,
    ∴当OB∥AC′,四边形OBC′A是平行四边形,
    ∵∠AOB=90°,
    ∴四边形OBC′A是矩形,
    ∴∠AC′B=90°,∵∠AC′D′=90°,
    ∴B、C′、D′共线,
    ∴BD′∥OA,
    ∵AC=CO, BD=AD,
    ∴CD=C′D′=OB=2,
    ∴D′(10,4),
    根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.
    综上所述,满足条件的点D坐标(10,4)或(6,4).
    (II)如图②,当α=60°时,作C′K⊥AC于K.

    在Rt△AC′K中,∵∠KAC′=60°,AC′=4,
    ∴AK=2,C′K=2,
    ∴OK=6,
    ∴C′(6,2).
    (III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).

    ②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,

    ∴OF=FC′,设OF=FC′=x,
    在Rt△ABC′中,BC′==8,
    在RT△BOF中,OB=4,OF=x,BF=8﹣x,
    ∴(8﹣x)2=42+x2,
    解得x=3,
    ∴OF=FC′=3,BF=5,作C′K⊥OA于K,
    ∵OB∥KC′,
    ∴==,
    ∴==,
    ∴KC′=,KF=,
    ∴OK=,
    ∴C′(,﹣).
    【点睛】
    本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    26、(1);(2);(3)
    【解析】
    (1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.
    (2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.
    (3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.
    【详解】
    (1)如图1:连接OB、OC.
    ∵BC=AO
    ∴OB=OC=BC
    ∴△OBC是等边三角形
    ∴∠BOC=60°
    ∵点D是BC的中点
    ∴∠BOD=
    ∵OA=OC
    ∴=α
    ∴∠AOD=180°-α-α-=150°-2α

    (2)如图2:连接OB、OC、OD.
    由(1)可得:△OBC是等边三角形,∠BOD=
    ∵OB=2,
    ∴OD=OB∙cos=
    ∵B为的中点,
    ∴∠AOB=∠BOC=60°
    ∴∠AOD=90°
    根据勾股定理得:AD=

    (3)①如图3.圆O与圆D相内切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    设AF=x
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    ②如图4.圆O与圆D相外切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    【点睛】
    本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
    27、(1)证明见解析;(1)①16;②14;
    【解析】
    (1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
    (1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
    ②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
    【详解】
    (1)证明:∵GB=GC,
    ∴∠GBC=∠GCB,
    在平行四边形ABCD中,
    ∵AD∥BC,AB=DC,AB∥CD,
    ∴GB-GE=GC-GF,
    ∴BE=CF,
    在△ABE与△DCF中,

    ∴△ABE≌△DCF,
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=∠D=90°,
    ∴四边形ABCD是矩形;
    (1)①∵EF∥BC,
    ∴△GFE∽△GBC,
    ∵EF=AD,
    ∴EF=BC,
    ∴,
    ∵△GEF的面积为1,
    ∴△GBC的面积为18,
    ∴四边形BCFE的面积为16,;
    ②∵四边形BCFE的面积为16,
    ∴(EF+BC)•AB=×BC•AB=16,
    ∴BC•AB=14,
    ∴四边形ABCD的面积为14,
    故答案为:14.
    【点睛】
    本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.

    相关试卷

    云南省重点中学2022年十校联考最后数学试题含解析: 这是一份云南省重点中学2022年十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,与∠1是内错角的是,下列各式中,正确的是等内容,欢迎下载使用。

    河北省廊坊市安次区重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份河北省廊坊市安次区重点中学2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。

    河北省保定唐县联考2022年十校联考最后数学试题含解析: 这是一份河北省保定唐县联考2022年十校联考最后数学试题含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map