![海南省琼中学黎族苗族自治县重点达标名校2021-2022学年中考数学押题卷含解析01](http://img-preview.51jiaoxi.com/2/3/13530929/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![海南省琼中学黎族苗族自治县重点达标名校2021-2022学年中考数学押题卷含解析02](http://img-preview.51jiaoxi.com/2/3/13530929/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![海南省琼中学黎族苗族自治县重点达标名校2021-2022学年中考数学押题卷含解析03](http://img-preview.51jiaoxi.com/2/3/13530929/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
海南省琼中学黎族苗族自治县重点达标名校2021-2022学年中考数学押题卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列二次根式中,最简二次根式的是( )
A.B.C.D.
2.分式方程的解为( )
A.x=-2B.x=-3C.x=2D.x=3
3.下面的几何体中,主视图为圆的是( )
A.B.C.D.
4.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则( )
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cs∠BAC=;
④∠ACB=50°.其中错误的是( )
A.①②B.②④C.①③D.③④
5.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2B.﹣1C.1D.2
6.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1B.4C.8D.﹣16
7.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则csC的值为( )
A.B.C.D.
8.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )
A.a<0,b<0,c>0
B.﹣=1
C.a+b+c<0
D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
9.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
A.70°B.65°C.62°D.60°
10.下列各式中的变形,错误的是(( )
A.B.C.D.
11.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
12.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:2m2﹣8n2= .
14.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
15.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.
16.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
17.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
18.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
20.(6分)(1)计算:.
(2)解方程:x2﹣4x+2=0
21.(6分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.
22.(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.
23.(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).
小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:
建立函数模型:
设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):
根据函数的表达式,得到了x与y的几组值,如下表:
描点、画函数图象:
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
观察分析、得出结论:
根据以上信息可得,当x=________时,y有最小值.
由此,小强确定篱笆长至少为________米.
24.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
25.(10分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结BO,求△AOB的面积;
(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 .
26.(12分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、=,被开方数含分母,不是最简二次根式;故A选项错误;
B、=,被开方数为小数,不是最简二次根式;故B选项错误;
C、,是最简二次根式;故C选项正确;
D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
故选C.
考点:最简二次根式.
2、B
【解析】
解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.
3、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
4、B
【解析】
先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.
【详解】
如图所示,
由题意可知,∠1=60°,∠4=50°,
∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;
∵∠2=60°,
∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;
∵∠1=∠2=60°,
∴∠BAC=30°,
∴cs∠BAC=,故③正确;
∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.
故选B.
【点睛】
本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.
5、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
6、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
7、D
【解析】
如图,连接AB,
由圆周角定理,得∠C=∠ABO,
在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
∴.
故选D.
8、D
【解析】
试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
9、A
【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
【详解】
∵AB∥CD,∠C=35°,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC=70°,
∵AB∥CD,
∴∠BED=∠ABE=70°.
故选:A.
【点睛】
本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
10、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
11、C
【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5),
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
12、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2(m+2n)(m﹣2n).
【解析】
试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.
解:2m2﹣8n2,
=2(m2﹣4n2),
=2(m+2n)(m﹣2n).
考点:提公因式法与公式法的综合运用.
14、1
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.
故答案为1.
点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
15、②③④⑤
【解析】
试题解析:∵二次函数与x轴有两个交点,
∴b2-4ac>1,故①错误,
观察图象可知:当x>-1时,y随x增大而减小,故②正确,
∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
∴x=1时,y=a+b+c<1,故③正确,
∵当m>2时,抛物线与直线y=m没有交点,
∴方程ax2+bx+c-m=1没有实数根,故④正确,
∵对称轴x=-1=-,
∴b=2a,
∵a+b+c<1,
∴3a+c<1,故⑤正确,
故答案为②③④⑤.
16、5
【解析】
由题意得, ,.
∴原式
17、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
18、.
【解析】
分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.
【详解】
有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.
故答案为
【点睛】
考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析.
【解析】
试题分析:由可得则可证明,因此可得
试题解析:即,在和中,
考点:三角形全等的判定.
20、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
21、.
【解析】
由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
【详解】
解:∵,的长分别是关于的方程的两根,
设方程的两根为和,可令,,
∵四边形是菱形,
∴,
在中:由勾股定理得:,
∴,则,
由根与系数的关系得:,,
∴,
整理得:,
解得:,
又∵,
∴,解得,
∴.
【点睛】
此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
22、(1)答案见解析;(2)答案见解析.
【解析】
试题分析:(1)根据等腰直角三角形的性质即可解决问题.
(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).
(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.
考点:作图—应用与设计作图.
23、见解析
【解析】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.
【详解】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x
∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.
故答案为:y=2x,2,1.
【点睛】
本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.
24、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
25、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;
【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.
【详解】
解:
(1)过A作AM⊥x轴于M,
则AM=1,OA=,由勾股定理得:OM=1,
即A的坐标是(1,1),
把A的坐标代入y=得:k=1,
即反比例函数的解析式是y=.
把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
即B的坐标是(﹣2,﹣),
把A、B的坐标代入y=ax+b得:,
解得:k=.b=﹣,
即一次函数的解析式是y=x﹣.
(2)连接OB,
∵y=x﹣,
∴当x=0时,y=﹣,
即OD=,
∴△AOB的面积是S△BOD+S△AOD=××2+××1=.
(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,
故答案为﹣2<x<0或x>1.
【点睛】
本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.
26、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
27、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
x
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
y
17
10
8.3
8.2
8.7
9.3
10.8
11.6
贵州省兴义市重点达标名校2021-2022学年中考数学押题卷含解析: 这是一份贵州省兴义市重点达标名校2021-2022学年中考数学押题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-5的倒数是, 的相反数是等内容,欢迎下载使用。
2022年福建省沙县重点达标名校中考数学押题卷含解析: 这是一份2022年福建省沙县重点达标名校中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,二次函数的对称轴是,我省2013年的快递业务量为1,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年山西省永济市重点达标名校中考数学押题卷含解析: 这是一份2021-2022学年山西省永济市重点达标名校中考数学押题卷含解析,共17页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。