![2022-2023九年级数学下册期末复习培优练习-第27章+相似(辽宁中考)01](http://img-preview.51jiaoxi.com/2/3/13529038/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023九年级数学下册期末复习培优练习-第27章+相似(辽宁中考)02](http://img-preview.51jiaoxi.com/2/3/13529038/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023九年级数学下册期末复习培优练习-第27章+相似(辽宁中考)03](http://img-preview.51jiaoxi.com/2/3/13529038/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022-2023九年级数学下册期末复习培优练习-第27章+相似(辽宁中考)
展开2022-2023九年级数学下册期末复习培优练习-第27章 相似(辽宁中考)
一.选择题(共3小题)
1.(2021•沈阳)如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是( )
A.1:2 B.1:3 C.1:4 D.1:
2.(2021•锦州)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
A.2 B.4 C.3 D.4
3.(2020•营口)如图,在△ABC中,DE∥AB,且=,则的值为( )
A. B. C. D.
二.填空题(共15小题)
4.(2022•阜新)如图,在矩形ABCD中,E是AD边上一点,且AE=2DE,BD与CE相交于点F,若△DEF的面积是3,则△BCF的面积是 .
5.(2022•锦州)如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF的面积为 .
6.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 .
7.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
8.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是 .
9.(2021•沈阳)如图,△ABC中,AC=3,BC=4,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且CD=1.P是线段DE上一点,且PD=DE.过点P作直线l与BC平行,分别交AB,AD于点G,H,则GH的长是 .
10.(2021•鞍山)如图,△ABC的顶点B在反比例函数y=(x>0)的图象上,顶点C在x轴负半轴上,AB∥x轴,AB,BC分别交y轴于点D,E.若==,S△ABC=13,则k= .
11.(2021•辽宁)如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是 .(填写所有正确结论的序号)
12.(2021•阜新)如图,已知每个小方格的边长均为1,则△ABC与△CDE的周长比为 .
13.(2021•营口)如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC= .
14.(2021•营口)如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF= .
15.(2020•盘锦)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是 .
16.(2020•锦州)如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为 .
17.(2020•大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为 .
18.(2020•鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有 .(只填序号即可)
三.解答题(共8小题)
19.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
20.(2022•营口)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:∠D=∠EBC;
(2)若CD=2BC,AE=3,求⊙O的半径.
21.(2021•鞍山)如图,AB为⊙O的直径,C为⊙O上一点,D为AB上一点,BD=BC,过点A作AE⊥AB交CD的延长线于点E,CE交⊙O于点G,连接AC,AG,在EA的延长线上取点F,使∠FCA=2∠E.
(1)求证:CF是⊙O的切线;
(2)若AC=6,AG=,求⊙O的半径.
22.(2021•丹东)如图,⊙O是△ABC的外接圆,点D是的中点,过点D作EF∥BC分别交AB、AC的延长线于点E和点F,连接AD、BD,∠ABC的平分线BM交AD于点M.
(1)求证:EF是⊙O的切线;
(2)若AB:BE=5:2,AD=,求线段DM的长.
23.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.
(1)求证:AF=AE;
(2)若AB=8,BC=2,求AF的长.
24.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.
(1)求证:EC是⊙O的切线;
(2)若⊙O的半径是3,DG•DB=9,求CE的长.
25.(2020•朝阳)如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,2),B(﹣1,3),C(﹣1,1),请按如下要求画图:
(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1,请画出△A1B1C1;
(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.
26.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.
(1)画出△A1B1C1,并直接写出点A1的坐标;
(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.
2022-2023九年级数学下册期末复习培优练习-第27章 相似(辽宁中考)
参考答案与试题解析
一.选择题(共3小题)
1.(2021•沈阳)如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是( )
A.1:2 B.1:3 C.1:4 D.1:
【解答】解:∵△ABC与△A1B1C1位似,
∴△ABC∽△A1B1C1,AC∥A1C1,
∴△AOC∽△A1OC1,
∴==,
∴△ABC与△A1B1C1的周长比为1:2,
故选:A.
2.(2021•锦州)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
A.2 B.4 C.3 D.4
【解答】解:方法一、连接CO,过点D作DG⊥AB于点G,连接AD,
∵∠BDC=45°,
∴∠CAO=∠CDB=45°,
∵AB为⊙O的直径,
∴∠ACB=∠ADB=90°,
∴∠CAB=∠CBA=45°,
∵BC=6,
∴AB=BC=12,
∵OA=OB,
∴CO⊥AB,
∴∠COA=∠DGE=90°,
∵∠DEG=∠CEO,
∴△DGE∽△COE,
∴=,
∵CE=2DE,
设GE=x,则OE=2x,DG=3,
∴AG=6﹣3x,BG=6+3x,
∵∠ADB=∠AGB=90°,
∠DAG=∠BAD,
∴△AGD∽△ADB,
∴DG2=AG•BG,
∴9=(6﹣3x)(6+3x),
∵x>0,
∴x=,
∴OE=2,
在Rt△OCE中,由勾股定理得:
CE=,
方法二、∵∠CDB=∠A=45°,
∴∠ABC=∠A=45°,
∵∠BCE=∠DCB,
∴△BCE∽△DCB,
∴BC2=CE×CD,
设DE=x,则CE=2x,
∴(6)2=2x×3x,
∵x>0,
∴x=2,
∴CE=4,
故选:D.
3.(2020•营口)如图,在△ABC中,DE∥AB,且=,则的值为( )
A. B. C. D.
【解答】解:∵DE∥AB,
∴==,
∴的值为,
故选:A.
二.填空题(共15小题)
4.(2022•阜新)如图,在矩形ABCD中,E是AD边上一点,且AE=2DE,BD与CE相交于点F,若△DEF的面积是3,则△BCF的面积是 27 .
【解答】解:∵四边形ABCD是矩形,
∴ADBC,
∴∠EDF=∠CBF,
∵∠EFD=∠CFB,
∴△DEF∽△BCF,
∵AE=2DE,AD=BC,
∴DE:BC=1:3,
∴S△DEF:S△BCF=DE2:BC2,即3:S△BCF=1:9,
∴S△BCF=27.
故答案为:27.
5.(2022•锦州)如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF的面积为 3 .
【解答】解:∵四边形ABCD是正方形,
∴AD=BC=AB=6,AD∥BC,
∵E为AD的中点,
∴AE=AB=3,
∵AE∥BC,
∴△AEF∽△CBF,
∴==,
∴S△AEF:S△ABF=1:2,
∴S△AEF=S△ABE=××3×6=3.
故答案为:3.
6.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 5 .
【解答】解:∵AB∥CD,
∴∠B=∠C,∠A=∠D,
∴△EAB∽△EDC,
∴AB:CD=AE:DE=1:2,
又∵AB=2.5,
∴CD=5.
故答案为:5.
7.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:
设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),
∵E为OE中点,
∴E(﹣,),
设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:
,
解得,
∴直线CE解析式为y=x+,
在y=x+中,令x=﹣1得y=,
∴G(﹣1,),
∴GE==,
∵将线段CE绕点C逆时针旋转90°得到CF,
∴CE=CF,∠ECF=90°,
∴∠MCE=90°﹣∠NCF=∠NFC,
∵∠EMC=∠CNF=90°,
∴△EMC≌△CNF(AAS),
∴ME=CN,CM=NF,
∵E(﹣,),C(1,1),
∴ME=CN=,CM=NF=,
∴F(,﹣),
∵H是EF中点,
∴H(,0),
∴OH=,
∴==.
故答案为:.
8.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是 3或2 .
【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠BAC=30°,
∴AB=2BC=2×2=4,
∴AC===2,
当∠APQ=90°时,如图1,
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠BAC=30°,
∴AB=2BC=2×2=4,
∴AC===2,
∵∠APQ=∠ACB=90°,∠CAP=∠BAC,
∴△CAP∽△BAC,
∴,即,
∴AP=3,
当∠AQP=90°时,如图2,
∵PD⊥AC,PE⊥BC,∠ACB=90°,
∴四边形DPEC是矩形,
∴CQ=QP,
∵∠AQP=90°,
∴AQ垂直平分CP,
∴AP=AC=2,
综上所述,当△APQ为直角三角形时,AP的长是3或2,
故答案为:3或2.
9.(2021•沈阳)如图,△ABC中,AC=3,BC=4,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且CD=1.P是线段DE上一点,且PD=DE.过点P作直线l与BC平行,分别交AB,AD于点G,H,则GH的长是 或 .
【解答】解:∵△ABC中,AC=3,BC=4,AB=5,
∴AC2+BC2=25,AB2=25,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,
①当点D位于C点左侧时,如图:
设直线l交BE于点M,
∵l∥BC,
∴,∠MGB=∠ABC,
又∵四边形ABEF是正方形,且PD1=D1E,
∴BE=AB=5,∠EBA=90°,
即,
解得:BM=,
∵∠MGB=∠ABC,∠EBA=∠ACB=90°,
∴△GBM∽△BCA,
∴,
∴,
解得:GB=,
∴AG=AB﹣GB=,
∵l∥BC,
∴△AGH∽△ABD1,
∴,
∵CD1=1,
∴BD1=BC﹣CD1=3,
∴,
解得:GH=;
②当点D位于C点右侧时,如图:
与①同理,此时BD2=BC+CD2=5,
∴,
解得:GH=,
综上,GH的长为或,
故答案为:或.
10.(2021•鞍山)如图,△ABC的顶点B在反比例函数y=(x>0)的图象上,顶点C在x轴负半轴上,AB∥x轴,AB,BC分别交y轴于点D,E.若==,S△ABC=13,则k= 18 .
【解答】解:如图,过点B作BF⊥x轴于点F.
∵AB∥x轴,
∴△DBE∽△OCE,
∴=,
∵==,
∴====,
设CO=3a,DE=3b,则AD=2a,OE=2b,
∴,OD=5b,
∴BD=,
∴AB=AD+DB=,
∵S△ABC===13,
∴ab=,
∵S矩形ODBF=BD•OD===18,
又∵反比例函数图象在第一象限,
∴k=18,
故答案为18.
11.(2021•辽宁)如图,在△ABC和△DEC中,∠ACB=∠DCE=90°,∠BAC=∠EDC=60°,AC=2cm,DC=1cm.则下列四个结论:①△ACD∽△BCE;②AD⊥BE;③∠CBE+∠DAE=45°;④在△CDE绕点C旋转过程中,△ABD面积的最大值为(2+2)cm2.其中正确的是 ①②④ .(填写所有正确结论的序号)
【解答】解:∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
∴∠BCE=∠ACD,
∵∠BAC=∠EDC=60°,AC=2cm,DC=1cm,
∴tan∠BAC==,tan∠BAC==,
∴BC=2cm,CE=cm,
∴==2,
∴△ACD∽△BCE,故①正确;
∵△ACD∽△BCE,
∴∠EBC=∠DAC,
如图,记BE与AD、AC分别交于F、G,
∵∠AGF=∠BGC,
∴∠BCG=∠BFA=90°,
∴AD⊥BE,故②正确;
∵∠EBC=∠DAC,
∴∠CBE+∠DAE=∠DAC+∠DAE=∠CAE不一定等于45°,故③错误;
如图,过点C作CH⊥AB于H,
∵∠ABC=30°,
∴CH=BC=cm,
∴D到直线AB的最大距离为CH+CD=(+1)cm,
∴△ABD面积的最大值为=(2+2)cm2,故④正确.
故答案为:①②④.
12.(2021•阜新)如图,已知每个小方格的边长均为1,则△ABC与△CDE的周长比为 2:1 .
【解答】解:如图,
分别过点A、点E作AM⊥BD,EN⊥BD,垂足分别为点M、N,
则∠AMB=∠END=90°,
∵BM=2,DN=1,AM=4,EN=2,
∴,
∴△ABM∽△EDN,
∴∠ABM=∠EDN,=2,
∴AB∥ED,
∴∠BAC=∠EDC,
又∠ACB=∠DCE,
∴△ABC∽△CDE,
∴△ABC与△CDE的周长之比为2:1.
故答案为:2:1.
13.(2021•营口)如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC= 24 .
【解答】解:方法一:∵DE是△ABC的中位线,
∴D、E分别为AB、BC的中点,
如图过D作DM∥BC交AG于点M,
∵DM∥BC,
∴∠DMF=∠EGF,
∵点F为DE的中点,
∴DF=EF,
在△DMF和△EGF中,
,
∴△DMF≌△EGF(AAS),
∴S△DMF=S△EGF=1,GF=FM,DM=GE,
∵点D为AB的中点,且DM∥BC,
∴AM=MG,
∴FM=AM,
∴S△ADM=2S△DMF=2,
∵DM为△ABG的中位线,
∴=,
∴S△ABG=4S△ADM=4×2=8,
∴S梯形DMGB=S△ABG﹣S△ADM=8﹣2=6,
∴S△BDE=S梯形DMGB=6,
∵DE是△ABC的中位线,
∴S△ABC=4S△BDE=4×6=24,
方法二:连接AE,
∵DE是△ABC的中位线,
∴DE∥AC,DE=AC,
∵F是DE的中点,
∴=,
∴==,
∵S△EFG=1,
∴S△ACG=16,
∵EF∥AC,
∴==,
∴==,
∴S△AEG=S△ACG=4,
∴S△ACE=S△ACG﹣S△AEG=12,
∴S△ABC=2S△ACE=24,
故答案为:24.
14.(2021•营口)如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF= 6 .
【解答】解:如图,连接EC,过点D作DH⊥EC于H.
∵四边形ABCD是矩形,
∴∠BAD=∠BCD=90°,AD=BC=4,AB=CD=5,
∵AE=3,
∴DE===5,
∴DE=DC,
∵DH⊥EC,
∴∠CDH=∠EDH,
∵∠F=∠EDC,∠CDH=∠EDC,
∴∠CDH=∠F,
∵∠BCE+∠DCH=90°,∠DCH+∠CDH=90°,
∴∠BCE=∠CDH,
∴∠BCE=∠F,
∴EC∥AF,
∴=,
∴=,
∴CF=6,
故答案为:6.
15.(2020•盘锦)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是 (2,4)或(﹣2,﹣4) .
【解答】解:如图,
∵△OAB∽△OA′B′,相似比为3:2,B(3,6),
∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),
∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).
故答案为(2,4)或(﹣2,﹣4).
16.(2020•锦州)如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为 12 .
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∵D是AB的中点,
∴=,
∴=
∵△ADE的周长为6,
∴△ABC的周长为12,
故答案为:12.
17.(2020•大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为 .
【解答】解:在矩形 中,AD∥BC,
∴△DEF∽△BCF,
∴,
∵BD==10,BF=y,DE=x,
∴DF=10﹣y,
∴,化简得:,
∴y关于x的函数解析式为:,
故答案为:.
18.(2020•鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有 ①③④ .(只填序号即可)
【解答】解:∵ABCD为菱形,
∴AD=CD,
∵AE=DF,
∴DE=CF,
∵∠ADC=60°,
∴△ACD为等边三角形,
∴∠D=∠ACD=60°,AC=CD,
∴△ACF≌△CDE(SAS),故①正确;
过点F作FP∥AD,交CE于P点.
∵DF=2CF,
∴FP:DE=CF:CD=1:3,
∵DE=CF,AD=CD,
∴AE=2DE,
∴FP:AE=1:6=FG:AG,
∴AG=6FG,
∴CE=AF=7GF,故③正确;
过点B作BM⊥AG于M,BN⊥GC于N,
∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,
即∠AGC+∠ABC=180°,
∴点A、B、C、G四点共圆,
∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,
∴∠AGB=∠CGB=60°,
∴BM=BN,又AB=BC,
∴△ABM≌△CBN(HL),
∴S四边形ABCG=S四边形BMGN,
∵∠BGM=60°,
∴GM=BG,BM=BG,
∴S四边形BMGN=2S△BMG=2××=BG2,故④正确;
∵∠CGB=∠ACB=60°,∠CBG=∠HBC,
∴△BCH∽△BGC,
∴,
则BG•BH=BC2,
则BG•(BG﹣GH)=BC2,
则BG2﹣BG•GH=BC2,
则GH•BG=BG2﹣BC2,
当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,
而题中∠BCG未必等于90°,故②不成立,
故正确的结论有①③④,
故答案为:①③④.
三.解答题(共8小题)
19.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.
【解答】(1)证明:∵AC是直径,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵∠ACD=∠B,∠B=∠DAF,
∴∠DAF+∠DAC=90°,
∴OA⊥AF,
∵OA是半径,
∴AF是⊙O的切线;
(2)解:作DH⊥AC于点H,
∵⊙O的半径为5,
∴AC=10,
∵∠AHD=∠ADC,∠DAH=∠CAD,
∴△ADH∽△ACD,
∴,
∴AD2=AH•AC,
∴AH=,
∵AD是△AEF的中线,∠EAF=90°,
∴AD=ED,
∴AE=2AH=.
20.(2022•营口)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:∠D=∠EBC;
(2)若CD=2BC,AE=3,求⊙O的半径.
【解答】(1)证明:∵AD与⊙O相切于点A,
∴∠DAO=90°,
∴∠D+∠ABD=90°,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠BEC=180°﹣∠AEB=90°,
∴∠ACB+∠EBC=90°,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠D=∠EBC;
(2)解:∵CD=2BC,
∴BD=3BC,
∵∠DAB=∠CEB=90°,∠D=∠EBC,
∴△DAB∽△BEC,
∴==3,
∴AB=3EC,
∵AB=AC,AE=3,
∴AE+EC=AB,
∴3+EC=3EC,
∴EC=1.5,
∴AB=3EC=4.5,
∴⊙O的半径为2.25.
21.(2021•鞍山)如图,AB为⊙O的直径,C为⊙O上一点,D为AB上一点,BD=BC,过点A作AE⊥AB交CD的延长线于点E,CE交⊙O于点G,连接AC,AG,在EA的延长线上取点F,使∠FCA=2∠E.
(1)求证:CF是⊙O的切线;
(2)若AC=6,AG=,求⊙O的半径.
【解答】解:(1)∵∠B=∠AGC,∠ADG=∠CDB,
∴△ADG∽△DCB,
∴,
∵BD=BC,
∴GD=GA,
∴∠ADG=∠DAG,
又∵AE⊥AB,
∴∠EAD=90°,
∴∠GAE+∠DAG=∠E+∠ADG=90°,
∴∠GAE=∠E,
∴AG=DG=EG,∠AGD=2∠E,
∵∠FCA=2∠E,
∴∠FCA=∠AGD=∠B,
∵AB是⊙O的直径,
∴∠CAB+∠B=90°,
又∵OA=OC,
∴∠ACO=∠CAB,
∴∠FCA+∠ACO=90°,
∴∠FCO=90°,
即CF是⊙O的切线;
(2)∵CF是⊙O的切线,AE⊥AB,
∴AF=CF,
∴∠FAC=∠FCA=2∠E,
∴AC=AE=6,
又∵AG=DG=EG=,
在Rt△ADE中,AD=,
设⊙O的半径为x,则AB=2x,BD=BC=2x﹣2,
在Rt△ABC中,62+(2x﹣2)2=(2x)2,
解得:x=5,
∴⊙O的半径为5.
22.(2021•丹东)如图,⊙O是△ABC的外接圆,点D是的中点,过点D作EF∥BC分别交AB、AC的延长线于点E和点F,连接AD、BD,∠ABC的平分线BM交AD于点M.
(1)求证:EF是⊙O的切线;
(2)若AB:BE=5:2,AD=,求线段DM的长.
【解答】解:(1)证明:连接OD,如图,
∵点D是的中点,
∴,
∴OD⊥BC,
∵BC∥EF,
∴OD⊥EF,
∴EF为⊙O的切线;
(2)设BC、AD交于点N,
∵AB:BE=5:2,,EF∥BC,
∴,
∴DN=,
∵点D是的中点,
∴∠BAD=∠CAD=∠CBD,
又∵∠BDN=∠ADB,
∴△BDN∽△ADB,
∴,即:,
∴BD=2,
∵∠ABC的平分线BM交AD于点M,
∴∠ABM=∠CBM,
∴∠ABM+∠BAD=∠CBM+∠CBD,即:∠BMD=∠DBM,
∴DM=BD=2.
23.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.
(1)求证:AF=AE;
(2)若AB=8,BC=2,求AF的长.
【解答】(1)证明:连接AD,
∵AB是⊙O直径,
∴∠ADB=∠ADF=90°,
∴∠F+∠DAF=90°,
∵AF是⊙O的切线,
∴∠FAB=90°,
∴∠F+∠ABF=90°,
∴∠DAF=∠ABF,
∵=,
∴∠ABF=∠CAD,
∴∠DAF=∠CAD,
∴∠F=∠AEF,
∴AF=AE;
(2)解:∵AB是⊙O直径,
∴∠C=90°,
∵AB=8,BC=2,
∴AC===2,
∵∠C=∠FAB=90°,∠CEB=∠AEF=∠F,
∴△BCE∽△BAF,
∴=,即=,
∴CE=AF,
∵AF=AE,
∴CE=AE,
∵AE+CE=AC=2,
∴AE=,
∴AF=AE=.
24.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.
(1)求证:EC是⊙O的切线;
(2)若⊙O的半径是3,DG•DB=9,求CE的长.
【解答】解:(1)证明:如图,连接OC,
∵AB是直径,
∴∠ACB=90°,
∵OD∥BC,
∴∠CFE=∠ACB=90°,
∴∠DEC+∠FCE=90°,
∵∠DEC=∠BDC,∠BDC=∠A,
∴∠DEC=∠A,
∵OA=OC,
∴∠OCA=∠A,
∴∠OCA=∠DEC,
∵∠DEC+∠FCE=90°,
∴∠OCA+∠FCE=90°,即∠OCE=90°,
∴OC⊥CE,
又∵OC是⊙O的半径,
∴CE是⊙O切线.
(2)由(1)得∠CFE=90°,
∴OF⊥AC,
∵OA=OC,
∴∠COF=∠AOF,
∴,
∴∠ACD=∠DBC,
又∵∠BDC=∠BDC,
∴△DCG∽△DBC,
∴,
∴DC2=DG•DB=9,
∴DC=3,
∵OC=OD=3,
∴△OCD是等边三角形,
∴∠DOC=60°,
在Rt△OCE中,
∴,
∴.
25.(2020•朝阳)如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,2),B(﹣1,3),C(﹣1,1),请按如下要求画图:
(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1,请画出△A1B1C1;
(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.
【解答】解:(1)如图,△A1B1C1即为所求.
(2)如图,△A2B2C2即为所求.
26.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.
(1)画出△A1B1C1,并直接写出点A1的坐标;
(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.
【解答】解:(1)如图所示:点A1的坐标为(﹣2,﹣4);
(2)如图所示:
由勾股定理得OA==,
点A到点A2所经过的路径长为=.
第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古): 这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。
第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州): 这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共13页。
2022-2023九年级数学下册期末复习培优练习-第29章+投影与视图+选择题(辽宁中考): 这是一份2022-2023九年级数学下册期末复习培优练习-第29章+投影与视图+选择题(辽宁中考),共23页。