![江西省2020-2022年中考数学真题汇编之九年级试题【九年级上学期期末复习】-01](http://img-preview.51jiaoxi.com/2/3/13522593/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江西省2020-2022年中考数学真题汇编之九年级试题【九年级上学期期末复习】-02](http://img-preview.51jiaoxi.com/2/3/13522593/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江西省2020-2022年中考数学真题汇编之九年级试题【九年级上学期期末复习】-03](http://img-preview.51jiaoxi.com/2/3/13522593/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江西省2020-2022年中考数学真题汇编之九年级试题【九年级上学期期末复习】-
展开江西省2020-2022年中考数学真题汇编之九年级试题
一.根的判别式(共1小题)
1.(2022•江西)关于x的方程x2+2x+k=0有两个相等的实数根,则k的值为 .
二.根与系数的关系(共2小题)
2.(2021•江西)已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x2﹣x1x2= .
3.(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为 .
三.反比例函数图象上点的坐标特征(共1小题)
4.(2022•江西)已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为 .
四.待定系数法求反比例函数解析式(共2小题)
5.(2022•江西)如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.
(1)点B的坐标为 ,点D的坐标为 ,点C的坐标为 (用含m的式子表示);
(2)求k的值和直线AC的表达式.
6.(2020•江西)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连接OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.
(1)求反比例函数的解析式;
(2)求∠EOD的度数.
五.反比例函数与一次函数的交点问题(共1小题)
7.(2021•江西)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a),在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).
(1)求k的值;
(2)求AB所在直线的解析式.
六.二次函数的图象(共1小题)
8.(2021•江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A. B.
C. D.
七.待定系数法求二次函数解析式(共1小题)
9.(2020•江西)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣2
﹣1
0
1
2
…
y
…
m
0
﹣3
n
﹣3
…
(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;
(2)求抛物线的表达式及m,n的值;
(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?
(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系 .
八.抛物线与x轴的交点(共1小题)
10.(2020•江西)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为( )
A.y=x B.y=x+1 C.y=x+ D.y=x+2
九.二次函数的应用(共1小题)
11.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
(1)c的值为 ;
(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 ;
(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.
一十.二次函数综合题(共1小题)
12.(2021•江西)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.
感知特例
(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:
…
B(﹣1,3)
O(0,0)
C(1,﹣1)
A( , )
D(3,3)
…
…
B'(5,﹣3)
O′(4,0)
C'(3,1)
A′(2,0)
D'(1,﹣3)
…
①补全表格;
②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.
形成概念
我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.
探究问题
(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ;
②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);
③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.
一十一.正多边形和圆(共1小题)
13.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 .
一十二.利用轴对称设计图案(共1小题)
14.(2021•江西)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )
A.2 B.3 C.4 D.5
一十三.作图-旋转变换(共2小题)
15.(2021•江西)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).
(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;
(2)在图2中,将直线AC向上平移1个单位长度.
16.(2020•江西)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作△ABC关于点O对称的△A'B'C';
(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.
一十四.相似三角形的判定与性质(共1小题)
17.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
(1)求证:△ABC∽△AEB;
(2)当AB=6,AC=4时,求AE的长.
一十五.解直角三角形的应用(共3小题)
18.(2022•江西)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)
(1)求证:四边形DEFG为平行四边形;
(2)求雕塑的高(即点G到AB的距离).
(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)
19.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
(1)求∠ABC的度数;
(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)
20.(2020•江西)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)
(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;
(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)
一十六.简单组合体的三视图(共2小题)
21.(2022•江西)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )
A. B.
C. D.
22.(2021•江西)如图,几何体的主视图是( )
A. B.
C. D.
一十七.列表法与树状图法(共3小题)
23.(2022•江西)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.
(1)“随机抽取1人,甲恰好被抽中”是 事件;
A.不可能
B.必然
C.随机
(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.
24.(2021•江西)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“A志愿者被选中”是 事件(填“随机”或“不可能”或“必然”);
(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
25.(2020•江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.
(1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;
(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.
九年级数学上学期期末复习培优综合练习 -人教版九年级中考数学真题汇编(江西省)
参考答案与试题解析
一.根的判别式(共1小题)
1.(2022•江西)关于x的方程x2+2x+k=0有两个相等的实数根,则k的值为 1 .
【解答】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,
∴Δ=22﹣4×1×k=0,
解得:k=1.
故答案为:1.
【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.
二.根与系数的关系(共2小题)
2.(2021•江西)已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x2﹣x1x2= 1 .
【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两根,
∴x1+x2=4,x1x2=3.
则x1+x2﹣x1x2=4﹣3=1.
故答案是:1.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.
3.(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为 x=﹣2 .
【解答】解:∵a=1,b=﹣k,c=﹣2,
∴x1•x2==﹣2.
∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,
∴另一个根为x=﹣2÷1=﹣2.
故答案为:x=﹣2.
【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
三.反比例函数图象上点的坐标特征(共1小题)
4.(2022•江西)已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为 5或2或 .
【解答】解:当AO=AB时,AB=5;
当AB=BO时,AB=5;
当OA=OB时,设A(a,)(a>0),B(5,0),
∵OA=5,
∴=5,
解得:a1=3,a2=4,
∴A(3,4)或(4,3),
∴AB==2或AB==;
综上所述,AB的长为5或2或.
故答案为:5或2或.
【点评】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当OA=OB时,求出点A的坐标是解题的关键.
四.待定系数法求反比例函数解析式(共2小题)
5.(2022•江西)如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.
(1)点B的坐标为 (0,2) ,点D的坐标为 (1,0) ,点C的坐标为 (m+1,2) (用含m的式子表示);
(2)求k的值和直线AC的表达式.
【解答】解:(1)由题意得:B(0,2),D(1,0),
由平移可知:线段AB向下平移2个单位,再向右平移1个单位,
∵点A(m,4),
∴C(m+1,2),
故答案为:(0,2),(1,0),(m+1,2);
(2)∵点A和点C在反比例函数y=的图象上,
∴k=4m=2(m+1),
∴m=1,
∴A(1,4),C(2,2),
∴k=1×4=4,
设直线AC的表达式为:y=nx+b,
,
解得:,
∴直线AC的表达式为:y=﹣2x+6.
【点评】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB和OD的长得出平移的规律是解题关键.
6.(2020•江西)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连接OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.
(1)求反比例函数的解析式;
(2)求∠EOD的度数.
【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
∴△AOD是等腰直角三角形,
∵OA=2,
∴OD=AD=2,
∴A(2,2),
∵顶点A在反比例函数y=(x>0)的图象上,
∴k=2×2=4,
∴反比例函数的解析式为y=(x>0);
(2)∵AB=2OA,点E恰为AB的中点,
∴OA=AE,
∴∠AOE=∠AEO,
∵Rt△ABC中,∠ACB=90°,
∴CE=AE=BE,
∴∠ECB=∠EBC,
∵∠AEO=∠ECB+∠EBC=2∠EBC,
∵BC∥x轴,
∴∠EOD=∠ECB,
∴∠AOE=2∠EOD,
∵∠AOD=45°,
∴∠EOD=15°.
【点评】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.
五.反比例函数与一次函数的交点问题(共1小题)
7.(2021•江西)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a),在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).
(1)求k的值;
(2)求AB所在直线的解析式.
【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),
∴a=1,
∴A(1,1),
∵点A在反比例函数y=(x>0)的图象上,
∴k=1×1=1;
(2)作AD⊥x轴于点D,BE⊥x轴于点E,
∵A(1,1),C(﹣2,0),
∴AD=1,CD=3,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵∠ACD+∠CAD=90°,
∴∠BCE=∠CAD,
在△BCE和△CAD中,
,
∴△BCE≌△CAD(AAS),
∴CE=AD=1,BE=CD=3,
∴B(﹣3,3),
设直线AB的解析式为y=mx+n,
∴,解得,
∴直线AB的解析式为y=﹣+.
【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,全等三角形的判定和性质,求得B的坐标是解题的关键.
六.二次函数的图象(共1小题)
8.(2021•江西)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A. B.
C. D.
【解答】解:观察函数图象可知:a>0,b>0,c<0,
∴二次函数y=ax2+bx+c的图象开口向上,对称轴x=﹣<0,与y轴的交点在y轴负半轴.
故选:D.
【点评】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出a>0、b>0、c<0是解题的关键.
七.待定系数法求二次函数解析式(共1小题)
9.(2020•江西)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣2
﹣1
0
1
2
…
y
…
m
0
﹣3
n
﹣3
…
(1)根据以上信息,可知抛物线开口向 上 ,对称轴为 直线x=1 ;
(2)求抛物线的表达式及m,n的值;
(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?
(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系 A3A4﹣A1A2=1 .
【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;
故答案为:上,直线x=1;
(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:
,
解得:,
∴抛物线解析式为y=x2﹣2x﹣3,
当x=﹣2时,m=4+4﹣3=5;
当x=1时,n=1﹣2﹣3=﹣4;
(3)画出抛物线图象,描出P'的轨迹,是一条抛物线,如图1所示,
(4)方法一:不妨假设交点在x轴上,则A1(﹣1,0),A2(﹣,0),A2(1.5,0),A4(3,0),
∴A3A4=1.5,A1A2=0.5,
∴A3A4﹣A1A2=1.
方法二:如图2,设点A1,A2,A3,A4对应的横坐标分别为x1,x2,x3,x4,
∴A1A2=x2﹣x1,A3A4=x4﹣x3,
∴A3A4﹣A1A2=x4﹣x3﹣(x2﹣x1)=x4+x1﹣(x3+x2),
令y=x2﹣2x﹣3=m,可得x2﹣2x﹣3﹣m=0,它对应的两个根应为x1,x4,
∴x1+x4=2,
令y=2x2﹣2x﹣=m,可得2x2﹣2x﹣﹣m=0,它对应的两个根应为x2,x3,
∴x2+x3=1,
∴A3A4﹣A1A2=2﹣1=1.
或(x1+x4)=1(对称轴),
倍长OA2到OA'2,倍长OA3到OA'3,可知A'2(横坐标2x2)和A'3(横坐标2x3)在原抛物线上,且关于对称轴对称,
(2x2+2x3)=1(对称轴),
可得A3A4﹣A1A2=1.
方法三:如图2,设P(x,y),P′(p,q),
∵点P′为OP 的中点,
∴p=x,q=y,即x=2p,y=2q,代入y=x2﹣2x﹣3中,得(2p)2﹣2×2p﹣3=2q,
∴q=2p2﹣2p﹣,即点P′所在的抛物线的表达式为y=2x2﹣2x﹣,
∵直线y=m与抛物线y=x2﹣2x﹣3有两个交点,
∴,解得,或,
∴A1(1﹣,m),A4(1+,m),
∵直线y=m与抛物线y=2x2﹣2x﹣有两个交点,
∴,解得,或,
∴A2(﹣,m),A3(+,m),
∴A1A2=(﹣)﹣(1﹣)=﹣﹣+,
A3A4=(1+)﹣(+)=﹣+,
∴A3A4﹣A1A2=(﹣+)﹣(﹣﹣+)=1.
故答案为:A3A4﹣A1A2=1.
【点评】本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.
八.抛物线与x轴的交点(共1小题)
10.(2020•江西)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为( )
A.y=x B.y=x+1 C.y=x+ D.y=x+2
【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,
令y=0,解得x=﹣1或3,
令x=0,求得y=﹣3,
∴B(3,0),A(0,﹣3),
∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,
∴A′的横坐标为1,
设A′(1,n),则B′(4,n+3),
∵点B'落在抛物线上,
∴n+3=16﹣8﹣3,解得n=2,
∴A′(1,2),B′(4,5),
设直线A'B'的表达式为y=kx+b,
∴,
解得
∴直线A'B'的表达式为y=x+1,
故选:B.
【点评】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.
九.二次函数的应用(共1小题)
11.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
(1)c的值为 66 ;
(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 b> ;
(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.
【解答】解:(1)∵起跳台的高度OA为66m,
∴A(0,66),
把A(0,66)代入y=ax2+bx+c得:
c=66,
故答案为:66;
(2)①∵a=﹣,b=,
∴y=﹣x2+x+66,
∵基准点K到起跳台的水平距离为75m,
∴y=﹣×752+×75+66=21,
∴基准点K的高度h为21m;
②∵a=﹣,
∴y=﹣x2+bx+66,
∵运动员落地点要超过K点,
∴x=75时,y>21,
即﹣×752+75b+66>21,
解得b>,
故答案为:b>;
(3)他的落地点能超过K点,理由如下:
∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,
∴抛物线的顶点为(25,76),
设抛物线解析式为y=a(x﹣25)2+76,
把(0,66)代入得:
66=a(0﹣25)2+76,
解得a=﹣,
∴抛物线解析式为y=﹣(x﹣25)2+76,
当x=75时,y=﹣×(75﹣25)2+76=36,
∵36>21,
∴他的落地点能超过K点.
【点评】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.
一十.二次函数综合题(共1小题)
12.(2021•江西)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.
感知特例
(1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:
…
B(﹣1,3)
O(0,0)
C(1,﹣1)
A( 2 , 0 )
D(3,3)
…
…
B'(5,﹣3)
O′(4,0)
C'(3,1)
A′(2,0)
D'(1,﹣3)
…
①补全表格;
②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.
形成概念
我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.
探究问题
(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ﹣3≤x≤﹣1 ;
②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 y=ax2 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);
③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.
【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,
∴点A为BB′的中点,
设点A(m,n),
∴m==2,n==0,
故答案为:(2,0);
②所画图象如图1所示,
(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,
抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,
∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,
故答案为:﹣3≤x≤﹣1;
②∵抛物线y=x2﹣2mx的“孔像抛物线”是y=﹣x2+6mx﹣8m2,
∴设符合条件的抛物线M解析式为y=a′x2+b′x+c′,
令a′x2+b′x+c′=﹣x2+6mx﹣8m2,
整理得(a′+1)x2+(b′﹣6m)x+(c′+8m2)=0,
∵抛物线M与抛物线L′有唯一交点,
∴分下面两种情形:
i)当a′=﹣1时,无论b′为何值,都会存在对应的m使得b′﹣6m=0,此时方程无解或有无数解,不符合题意,舍去;
ii)当a′≠﹣1时,Δ=(b′﹣6m)2﹣4(a′+1)(c′+8m2)=0,
即b′2﹣12b′m+36m2﹣4(a′+1)•8m2﹣4c′(a′+1)=0,
整理得[36﹣32(a′+1)]m2﹣12b′m+b′2﹣4c′(a′+1)=0,
∵当m取不同值时,两抛物线都有唯一交点,
∴当m取任意实数,上述等式都成立,即:上述等式成立与m取值无关,
∴,
解得a′=,b′=0,c′=0,
则y=x2,
故答案为:y=ax2;
③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),
其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),
抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),
∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:
i)直线y=m经过M(m,﹣m2),
∴m=﹣m2,
解得:m=﹣1或m=0(舍去),
ii)直线y=m经过N(3m,m2),
∴m=m2,
解得:m=1或m=0(舍去),
iii)直线y=m经过A(2m,0),
∴m=0,
但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,
综上所述,m=±1.
【点评】本题是关于二次函数综合题,主要考查了二次函数图象和性质,中心对称性质及应用,二次函数与一元二次方程的关系,一元二次方程根的判别式,新定义理解及应用等,解题关键是理解题意,运用数形结合思想和分类讨论思想、方程思想思考解决问题.
一十一.正多边形和圆(共1小题)
13.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 9或10或18 .
【解答】解:连接DF,DB,BF.则△DBF是等边三角形.
设BE交DF于J.
∵六边形ABCDEF是正六边形,
∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,
∴FJ=DJ=EF•sin60°=6×=9,
∴DF=18,
∴当点M与B重合,点N与F重合时,满足条件,
∴△DMN的边长为18,
如图,当点N在OC上,点M在OE上时,
等边△DMN的边长的最大值为6≈10.39,最小值为9,
∴△DMN的边长为整数时,边长为10或9,
综上所述,等边△DMN的边长为9或10或18.
故答案为:9或10或18.
【点评】本题考查正多边形与圆,等边三角形的判定和性质,解直角三角形等知识,解题的关键是判断出△BDF是等边三角形,属于中考常考题型.
一十二.利用轴对称设计图案(共1小题)
14.(2021•江西)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )
A.2 B.3 C.4 D.5
【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.
故选:B.
【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的性质,属于中考常考题型.
一十三.作图-旋转变换(共2小题)
15.(2021•江西)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).
(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;
(2)在图2中,将直线AC向上平移1个单位长度.
【解答】解:(1)如图1,直线l即为所求;
(2)如图2中,直线a即为所求.
【点评】本题考查了作图﹣旋转变换,作图﹣平移变换,正方形的性质,解决本题的关键是掌握旋转的性质和平移的性质.
16.(2020•江西)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作△ABC关于点O对称的△A'B'C';
(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.
【解答】解:(1)如图1中,△A'B'C'即为所求.
(2)如图2中,△AB'C'即为所求.
【点评】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.
一十四.相似三角形的判定与性质(共1小题)
17.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
(1)求证:△ABC∽△AEB;
(2)当AB=6,AC=4时,求AE的长.
【解答】(1)证明:∵四边形ABCD为菱形,
∴∠ACD=∠BCA,
∵∠ACD=∠ABE,
∴∠BCA=∠ABE,
∵∠BAC=∠EAB,
∴△ABC∽△AEB;
(2)解:∵△ABC∽△AEB,
∴=,
∵AB=6,AC=4,
∴=,
∴AE==9.
【点评】本题考查了菱形的判定与性质,相似三角形的判定与性质,掌握相似三角形的性质和判定是解本题的关键.
一十五.解直角三角形的应用(共3小题)
18.(2022•江西)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)
(1)求证:四边形DEFG为平行四边形;
(2)求雕塑的高(即点G到AB的距离).
(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)
【解答】(1)证明:∵AB∥CD,
∴∠CDG=∠A,
∵∠FEC=∠A,
∴∠FEC=∠CDG,
∴EF∥DG,
∵FG∥CD,
∴四边形DEFG为平行四边形;
(2)解:如图,过点G作GP⊥AB于P,
∵四边形DEFG为平行四边形,
∴DG=EF=6.2,
∵AD=1.6,
∴AG=DG+AD=6.2+1.6=7.8,
Rt△APG中,sinA=,
∴=0.96,
∴PG=7.8×0.96=7.488≈7.5.
答:雕塑的高为7.5m.
【点评】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.
19.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
(1)求∠ABC的度数;
(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)
【解答】解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,
∵MP=25.3cm,BA=HP=8.5cm,
∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),
在Rt△BMH中,
cos∠BMH===0.4,
∴∠BMH=66.4°,
∵AB∥MP,
∴∠BMH+∠ABC=180°,
∴∠ABC=180°﹣66.4°=113.6°;
(2)∵∠BMN=68.6°,∠BMH=66.4°,
∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,
∵MN=28cm,
∴cos45°==,
∴MI≈19.80cm,
∵KI=50cm,
∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈4.9(cm),
∴此时枪身端点A与小红额头的距离是在规定范围内.
【点评】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.
20.(2020•江西)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)
(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;
(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)
【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,
由题意可知,AC=80mm,CD=80mm,∠DCB=80°,∠CDE=60°,
在Rt△CDN中,CN=CD•sin∠CDE=80×=40mm=FM,
∠DCN=90°﹣60°=30°,
又∵∠DCB=80°,
∴∠BCN=80°﹣30°=50°,
∵AM⊥DE,CN⊥DE,
∴AM∥CN,
∴∠A=∠BCN=50°,
∴∠ACF=90°﹣50°=40°,
在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44(mm),
∴AM=AF+FM=51.44+40≈120.7(mm),
答:点A到直线DE的距离约为120.7mm;
(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,
在Rt△BCD中,CD=80mm,BC=40mm,
∴tan∠D===0.500,
∴∠D≈26.6°,
因此旋转的角度约为:60°﹣26.6°=33.4°,
答:CD旋转的角度约为33.4°.
【点评】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.
一十六.简单组合体的三视图(共2小题)
21.(2022•江西)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )
A. B.
C. D.
【解答】解:如图,它的俯视图为:
故选:A.
【点评】本题考查了简单组合体的三视图,从上边看上边看得到的图形是俯视图.注意看得见的棱画实线,看不见的棱画虚线.
22.(2021•江西)如图,几何体的主视图是( )
A. B.
C. D.
【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,
因此选项C中的图形符合题意,
故选:C.
【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.
一十七.列表法与树状图法(共3小题)
23.(2022•江西)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.
(1)“随机抽取1人,甲恰好被抽中”是 C 事件;
A.不可能
B.必然
C.随机
(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.
【解答】解:(1)随机抽取1人,甲恰好被抽中”是随机事件;
故答案为:C;
(2)设甲是共青团员用T表示,其余3人均是共产党员用G表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:
它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A)的结果有6种,
则P(A)==,
【点评】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
24.(2021•江西)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“A志愿者被选中”是 随机 事件(填“随机”或“不可能”或“必然”);
(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
【解答】解:(1)“A志愿者被选中”是随机事件,
故答案为:随机;
(2)列表如下:
A
B
C
D
A
﹣﹣﹣
(B,A)
(C,A)
(D,A)
B
(A,B)
﹣﹣﹣
(C,B)
(D,B)
C
(A,C)
(B,C)
﹣﹣﹣
(D,C)
D
(A,D)
(B,D)
(C,D)
﹣﹣﹣
由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,
所以A,B两名志愿者被选中的概率为=.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
25.(2020•江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.
(1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;
(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.
【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,
因此恰好抽到小艺的概率为,
故答案为:;
(2)用列表法表示所有可能出现的结果如下:
共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,
∴P(小志、小晴)==.
【点评】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.
2022年中考数学真题汇编之概率专题及真题答案: 这是一份2022年中考数学真题汇编之概率专题及真题答案,共13页。
重庆年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】: 这是一份重庆年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共70页。试卷主要包含了两点等内容,欢迎下载使用。
云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】: 这是一份云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共23页。试卷主要包含了的横坐标,m=,,且与x轴交于A、B两点等内容,欢迎下载使用。