福建省诏安县怀恩中学2022年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50° B.20° C.60° D.70°
2.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )
A.90° B.30° C.45° D.60°
3.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )
A.7 B. C. D.9
4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
5.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2 B.3 C.4 D.5
6.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
7.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
8.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
9.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
y1>y1.其中说法正确的是( )
A.①② B.②③ C.①②④ D.②③④
10.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______
12.关于 x 的方程 ax=x+2(a1) 的解是________.
13.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
14.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.
15.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.
16.如图,中,,则 __________.
三、解答题(共8题,共72分)
17.(8分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
18.(8分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
(I)如图1,若α=30°,求点B′的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
19.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
20.(8分)列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
21.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
22.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
23.(12分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
24.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
2、C
【解析】
根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
【详解】
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故选:C.
【点睛】
本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
3、B
【解析】
作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
【详解】
解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
4、D
【解析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
5、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
【点睛】
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
6、B
【解析】
求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
【详解】
解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
∵5>3.5>2.5>0.7>0.6,
∴最接近标准的篮球的质量是-0.6,
故选B.
【点睛】
本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
7、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
8、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
9、C
【解析】
∵二次函数的图象的开口向上,∴a>0。
∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
∴abc<0,因此说法①正确。
∵1a﹣b=1a﹣1a=0,因此说法②正确。
∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
∴图象与x轴的另一个交点的坐标是(1,0)。
∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
∵二次函数图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
∵当x>﹣1时,y随x的增大而增大,而<3
∴y1<y1,因此说法④正确。
综上所述,说法正确的是①②④。故选C。
10、B
【解析】
解:3400000=.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
【详解】
∵DE∥BC,
∴.
∵,CE=11,
∴,解得AE=1.
故答案为1.
【点睛】
本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
12、
【解析】
分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.
详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.
点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.
13、6
【解析】
设这个扇形的半径为,根据题意可得:
,解得:.
故答案为.
14、6
【解析】
作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.
【详解】
如图:
作DE⊥AB,交BA的延长线于E,作CF⊥AB,
∵AB∥CD,DE⊥AB⊥,CF⊥AB
∴CF=DE,且AC=AD
∴Rt△ADE≌Rt△AFC
∴AE=AF,∠DAE=∠BAC
∵tan∠BAC=3
∴tan∠DAE=3
∴设AE=a,DE=3a
在Rt△BDE中,BD2=DE2+BE2
∴52=(4+a)2+27a2
解得a1=1,a2=-(不合题意舍去)
∴AE=1=AF,DE=3=CF
∴BF=AB-AF=3
在Rt△BFC中,BC==6
【点睛】
本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.
15、x1=1,x2=﹣1.
【解析】
直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
【详解】
解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
∴抛物线与x轴的另一交点坐标为(﹣1,0),
∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
故本题答案为:x1=1,x2=﹣1.
【点睛】
本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
16、17
【解析】
∵Rt△ABC中,∠C=90°,∴tanA= ,
∵,∴AC=8,
∴AB= =17,
故答案为17.
三、解答题(共8题,共72分)
17、(1)见解析;(2)图见解析;.
【解析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
【详解】
解:(1)△A1B1C1如图所示.
(2)△A2B2C2如图所示.
∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
∴S△A1B1C1:S△A2B2C2=()2=.
18、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
【解析】
(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
(1)证明∠BPA'=90即可;
(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【详解】
(Ⅰ)如图1,设A'B'与x轴交于点H,
∵OA=1,OB=1,∠AOB=90°,
∴∠ABO=∠B'=30°,
∵∠BOB'=α=30°,
∴BO∥A'B',
∵OB'=OB=1,
∴OH=OB'=,B'H=3,
∴点B'的坐标为(,3);
(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
∴∠OBB'=∠OA'A=(180°﹣α),
∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
即AA'⊥BB';
(Ⅲ)点P纵坐标的最小值为.
如图,作AB的中点M(1,),连接MP,
∵∠APB=90°,
∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【点睛】
本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
19、 (1)200;(2)见解析;(3)126°;(4)240人.
【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数
(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
(3)根据小说类的百分比即可求出圆心角的度数;
(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
【详解】
(1)∵喜欢文史类的人数为76人,占总人数的38%,
∴此次调查的总人数为:76÷38%=200人,
故答案为200;
(2)∵喜欢生活类书籍的人数占总人数的15%,
∴喜欢生活类书籍的人数为:200×15%=30人,
∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
如图所示:
(3)∵喜欢社科类书籍的人数为:24人,
∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
∴小说类所在圆心角为:360°×35%=126°;
(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
【点睛】
此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
20、(1)2000件;(2)90260元.
【解析】
(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.
【详解】
解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,
根据题意得:-=4,
解得:x=2000,
经检验,x=2000是所列分式方程的解,且符合题意.
答:商场第一批购进衬衫2000件.
(2)2000×2=4000(件),
(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).
答:售完这两批衬衫,商场共盈利90260元.
【点睛】
本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.
21、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
【解析】
解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
,解得:。
答:每台电脑0.5万元,每台电子白板1.5万元。
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则,解得:,即a=15,16,17。
故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为万元;
方案二:购进电脑16台,电子白板14台.总费用为万元;
方案三:购进电脑17台,电子白板13台.总费用为万元。
∴方案三费用最低。
(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
22、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
【解析】
(1)当t=3时,点E为AB的中点,
∵A(8,0),C(0,6),
∴OA=8,OC=6,
∵点D为OB的中点,
∴DE∥OA,DE=OA=4,
∵四边形OABC是矩形,
∴OA⊥AB,
∴DE⊥AB,
∴∠OAB=∠DEA=90°,
又∵DF⊥DE,
∴∠EDF=90°,
∴四边形DFAE是矩形,
∴DF=AE=3;
(2)∠DEF的大小不变;理由如下:
作DM⊥OA于M,DN⊥AB于N,如图2所示:
∵四边形OABC是矩形,
∴OA⊥AB,
∴四边形DMAN是矩形,
∴∠MDN=90°,DM∥AB,DN∥OA,
∴, ,
∵点D为OB的中点,
∴M、N分别是OA、AB的中点,
∴DM=AB=3,DN=OA=4,
∵∠EDF=90°,
∴∠FDM=∠EDN,
又∵∠DMF=∠DNE=90°,
∴△DMF∽△DNE,
∴,
∵∠EDF=90°,
∴tan∠DEF=;
(3)作DM⊥OA于M,DN⊥AB于N,
若AD将△DEF的面积分成1:2的两部分,
设AD交EF于点G,则点G为EF的三等分点;
①当点E到达中点之前时,如图3所示,NE=3﹣t,
由△DMF∽△DNE得:MF=(3﹣t),
∴AF=4+MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
设直线AD的解析式为y=kx+b,
把A(8,0),D(4,3)代入得: ,
解得: ,
∴直线AD的解析式为y=﹣x+6,
把G(,)代入得:t=;
②当点E越过中点之后,如图4所示,NE=t﹣3,
由△DMF∽△DNE得:MF=(t﹣3),
∴AF=4﹣MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
代入直线AD的解析式y=﹣x+6得:t=;
综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
考点:四边形综合题.
23、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
24、(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件
【解析】
(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.
【详解】
解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得
,解得:.
答:购买A型学习用品400件,B型学习用品600件.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得
20(1000﹣a)+30a≤210,
解得:a≤1.
答:最多购买B型学习用品1件
福建省厦门五中学2022年中考数学模拟精编试卷含解析: 这是一份福建省厦门五中学2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了-的立方根是等内容,欢迎下载使用。
福建省诏安县怀恩中学2022年中考数学仿真试卷含解析: 这是一份福建省诏安县怀恩中学2022年中考数学仿真试卷含解析,共17页。试卷主要包含了下列图案是轴对称图形的是,﹣2018的相反数是等内容,欢迎下载使用。
2022届福建省宁化城东中学中考数学模拟精编试卷含解析: 这是一份2022届福建省宁化城东中学中考数学模拟精编试卷含解析,共17页。试卷主要包含了比较4,,的大小,正确的是,如图,点P,-5的倒数是等内容,欢迎下载使用。