广东省韶关市南雄市重点中学2022年中考数学模试卷含解析
展开2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为( )
A.120°B.140°C.150°D.160°
2.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
则这名运动员成绩的中位数、众数分别是( )
A.B.C.,D.
3.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )
A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)
4.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是( )
A.PC⊥OA,PD⊥OBB.OC=ODC.∠OPC=∠OPDD.PC=PD
5.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元B.720元C.1080元D.2160元
6.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
A.B.
C.D.
7.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%xB.(1+40%)(1﹣30%)x
C.D.
8.下列图形中为正方体的平面展开图的是( )
A.B.
C.D.
9.x=1是关于x的方程2x﹣a=0的解,则a的值是( )
A.﹣2B.2C.﹣1D.1
10.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为 cm.
12.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
13.函数中,自变量的取值范围是______
14.已知xy=3,那么的值为______ .
15.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
三、解答题(共8题,共72分)
17.(8分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b= ,c= ,点C的坐标为 .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.
18.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)
19.(8分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
求证:DE是⊙O的切线;若DE=3,CE=2. ①求的值;②若点G为AE上一点,求OG+EG最小值.
20.(8分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
21.(8分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?
22.(10分)请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
23.(12分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
24.已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;
(2)如图2所示,当α=45°时,求证:=;
(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据扇形的面积公式列方程即可得到结论.
【详解】
∵OB=10cm,AB=20cm,
∴OA=OB+AB=30cm,
设扇形圆心角的度数为α,
∵纸面面积为π cm2,
∴,
∴α=150°,
故选:C.
【点睛】
本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
2、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
3、B
【解析】
分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
又∵A的坐标是(1,1),
结合中点坐标公式可得P1的坐标是(1,0);
同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
根据对称关系,依次可以求得:
P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
∵1010=4×501+1,
∴点P1010的坐标是(1010,﹣1),
故选:B.
点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
4、D
【解析】
试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.
考点:角平分线的性质;全等三角形的判定.
5、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
6、A
【解析】
根据题意设未知数,找到等量关系即可解题,见详解.
【详解】
解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
综上方程组为,
故选A.
【点睛】
本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.
7、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
8、C
【解析】
利用正方体及其表面展开图的特点依次判断解题.
【详解】
由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
【点睛】
本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
9、B
【解析】
试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
故选B.
考点:一元一次方程的解.
10、D
【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【详解】
根据图中信息,某种结果出现的频率约为0.16,
在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,
∵AC为切线,
∴OC⊥AC,
在△AOC中,∵OA=2,OC=1,
∴∠OAC=30°,∠AOC=60°,
在Rt△AOD中,∵∠DAO=30°,
∴OD=OA=,
在Rt△BDP中,∵∠BDP=∠ADO=60°,
∴DP=BD=(2-)=1-,
在Rt△DPN中,∵∠PDN=30°,
∴PN=DP=-,
而MN=OD=,
∴PM=PN+MN=1-+=,
即P点纵坐标的最大值为.
【点睛】
本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.
12、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
13、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
14、±2
【解析】
分析:先化简,再分同正或同负两种情况作答.
详解:因为xy=3,所以x、y同号,
于是原式==,
当x>0,y>0时,原式==2;
当x<0,y<0时,原式==−2
故原式=±2.
点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.
15、
【解析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
故答案为:.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
16、.
【解析】
连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.
【详解】
解:连接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中, ,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:.
故答案为:.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
三、解答题(共8题,共72分)
17、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.
【详解】
(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
∴A(2,4),B(4,2).
又∵抛物线过B(4,2)
∴c=2.
把A(2,4)代入y=﹣x2+bx+2得,
4=﹣×22+2b+2,解得,b=3.
∴抛物线解析式为,y=﹣x2+x+2.
令﹣x2+x+2=4,
解得,x=﹣2或x=2.
∴C(﹣2,4).
(2)如图3,
分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
设P(m,﹣m2+m+2),Q(n,﹣n+2),
则PE=﹣m2+m+2,QD=﹣n+2.
又∵=y.
∴n=.
又∵,即
把n=代入上式得,
整理得,2y=﹣m2+2m.
∴y=﹣m2+m.
ymax=.
即PQ与OQ的比值的最大值为.
(3)如图2,
∵∠OBA=∠OBP+∠PBA=25°
∠PBA+∠CBO=25°
∴∠OBP=∠CBO
此时PB过点(2,4).
设直线PB解析式为,y=kx+2.
把点(2,4)代入上式得,4=2k+2.
解得,k=﹣2
∴直线PB解析式为,y=﹣2x+2.
令﹣2x+2=﹣x2+x+2
整理得, x2﹣3x=4.
解得,x=4(舍去)或x=5.
当x=5时,﹣2x+2=﹣2×5+2=﹣7
∴P(5,﹣7).
过P作PH⊥cy轴于点H.
则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
S△OAB=OA•OB=×2×2=7.
S△BHP=PH•BH=×5×3=35.
∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
【点睛】
本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
18、(1)证明见解析;(2)9﹣3π
【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
19、(1)证明见解析(2)① ②3
【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;
(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;
②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.
【详解】
(1)连接OE
∵OA=OE,∴∠AEO=∠EAO
∵∠FAE=∠EAO,∴∠FAE=∠AEO
∴OE∥AF
∵DE⊥AF,∴OE⊥DE
∴DE是⊙O的切线
(2)①解:连接BE
∵直径AB ∴∠AEB=90°
∵圆O与BC相切
∴∠ABC=90°
∵∠EAB+∠EBA=∠EBA+∠CBE=90°
∴∠EAB=∠CBE
∴∠DAE=∠CBE
∵∠ADE=∠BEC=90°
∴△ADE∽△BEC
∴
②连接OF,交AE于G,
由①,设BC=2x,则AE=3x
∵△BEC∽△ABC ∴
∴
解得:x1=2,(不合题意,舍去)
∴AE=3x=6,BC=2x=4,AC=AE+CE=8
∴AB=,∠BAC=30°
∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°
∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形
由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60=3.
故OG+EG最小值是3.
【点睛】
本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.
20、1+
【解析】
分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.
详解:原式=2×-1+-1+2
=1+.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
21、(1)S=﹣3x1+14x,≤x< 8;(1) 5m;(3)46.67m1
【解析】
(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;
(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;
(3)根据二次函数的性质及x的取值范围求出即可.
【详解】
解:(1)根据题意,得S=x(14﹣3x),
即所求的函数解析式为:S=﹣3x1+14x,
又∵0<14﹣3x≤10,
∴;
(1)根据题意,设花圃宽AB为xm,则长为(14-3x),
∴﹣3x1+14x=2.
整理,得x1﹣8x+15=0,
解得x=3或5,
当x=3时,长=14﹣9=15>10不成立,
当x=5时,长=14﹣15=9<10成立,
∴AB长为5m;
(3)S=14x﹣3x1=﹣3(x﹣4)1+48
∵墙的最大可用长度为10m,0≤14﹣3x≤10,
∴,
∵对称轴x=4,开口向下,
∴当x=m,有最大面积的花圃.
【点睛】
二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.
22、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
【解析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
(2)计算出两商场得费用,比较即可得到结果.
【详解】
解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
则∵n>10,且n为整数,
∴160+6.4n﹣(120+8n)=40﹣1.6n
讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
∴选择乙商场购买更合算.
当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
∴选择甲商场购买更合算.
【点睛】
此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
23、(1); (2);(3)
【解析】
(1)联立两直线解析式,求出交点P坐标即可;
(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
【详解】
解:(1)联立得:,解得:;
∴P的坐标为;
(2)分两种情况考虑:
当时,由F坐标为(a,0),得到OF=a,
把E横坐标为a,代入得:即
此时
当时,重合的面积就是梯形面积,
F点的横坐标为a,所以E点纵坐标为
M点横坐标为:-3a+12,
∴
所以;
(3)令中的y=0,解得:x=4,则A的坐标为(4,0)
则AP= ,则PM=2
又∵OP=
∴点P向左平移3个单位在向下平移可以得到M1
点P向右平移3个单位在向上平移可以得到M2
∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
A向右平移3个单位在向上平移可以得到 Q1(7,)
所以,存在Q点,且坐标是
【点睛】
本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
24、1
【解析】
试题分析:(1)证明△CFD≌△DAE即可解决问题.
(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.
(3)证明EC=ED即可解决问题.
试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.
(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四边形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.
(3)解:如图3中,设AC与DE交于点O.
∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.
点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.
成绩(米)
人数
2023年广东省韶关市仁化县中考数学二模试卷(含解析): 这是一份2023年广东省韶关市仁化县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题.,填空题,解答题等内容,欢迎下载使用。
广东省韶关市南雄市2022年中考数学一模试题(含解析): 这是一份广东省韶关市南雄市2022年中考数学一模试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省韶关市南雄市2022年中考数学一模试题(含解析): 这是一份广东省韶关市南雄市2022年中考数学一模试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。