|试卷下载
搜索
    上传资料 赚现金
    2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析01
    2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析02
    2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析

    展开
    这是一份2022届广东省韶关市南雄市重点中学中考冲刺卷数学试题含解析,共26页。试卷主要包含了-5的倒数是,尺规作图要求,估算的值是在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:
    人数
    2
    3
    4
    1
    分数
    80
    85
    90
    95
    则得分的众数和中位数分别是( )
    A.90和87.5 B.95和85 C.90和85 D.85和87.5
    2.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为(  )
    A.-1 B.-11 C.1 D.11
    3.如图所示的几何体,它的左视图与俯视图都正确的是( )

    A. B. C. D.
    4.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标(  )

    A. B.
    C. D.
    5.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为(  )

    A. B. C. D.
    6.-5的倒数是
    A. B.5 C.- D.-5
    7.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是  

    A.20、20 B.30、20 C.30、30 D.20、30
    8.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
    A. B. C. D.
    9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    10.估算的值是在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    11.下列运算正确的是(  )
    A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
    12.下面调查方式中,合适的是(  )
    A.调查你所在班级同学的体重,采用抽样调查方式
    B.调查乌金塘水库的水质情况,采用抽样调査的方式
    C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
    D.要了解全市初中学生的业余爱好,采用普查的方式
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.

    14.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
    15.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.
    16.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.

    17.π﹣3的绝对值是_____.
    18.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

    (1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
    (2)若tan∠F=,CD=a,请用a表示⊙O的半径;
    (3)求证:GF2﹣GB2=DF•GF.
    20.(6分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
    21.(6分)已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.
    (1)当a=2,b=1时,求该抛物线的“和谐点”;
    (2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.
    ①求实数a的取值范围;
    ②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.
    22.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
    A(-1,0),B(4,0),∠ACB=90°.
    (1)求过A、B、C三点的抛物线解析式;
    (2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
    (3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

    图1 备用图
    23.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:

    (1)该调查小组抽取的样本容量是多少?
    (2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
    (3)请估计该市中小学生一天中阳光体育运动的平均时间.
    24.(10分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
    (1)求证:四边形CDBE为矩形;
    (2)若AC=2,,求DE的长.

    25.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
    (1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
    (2)汽车B的速度是多少?
    (3)求L1,L2分别表示的两辆汽车的s与t的关系式.
    (4)2小时后,两车相距多少千米?
    (5)行驶多长时间后,A、B两车相遇?

    26.(12分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.

    在平面直角坐标系xOy中,⊙O的半径为1.
    (1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是   ;
    (2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
    ①∠MDN的大小为   ;
    ②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
    ③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
    27.(12分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
    收集数据:
    30
    60
    81
    50
    40
    110
    130
    146
    90
    100
    60
    81
    120
    140
    70
    81
    10
    20
    100
    81
    整理数据:
    课外阅读平均时间x(min)
    0≤x<40
    40≤x<80
    80≤x<120
    120≤x<160
    等级
    D
    C
    B
    A
    人数
    3
    a
    8
    b
    分析数据:
    平均数
    中位数
    众数
    80
    m
    n
    请根据以上提供的信息,解答下列问题:
    (1)填空:a=  ,b= ;m=  ,n=  ;
    (2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
    (3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
    解:在这一组数据中90是出现次数最多的,故众数是90;
    排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;
    故选:A.
    “点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    2、B
    【解析】
    先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
    【详解】
    由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
    所以
    解这个方程组,得
    所以2△2=a+b+c=-35-2c+24+c+c=-2.
    故选B.
    【点睛】
    本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
    3、D
    【解析】
    试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
    考点:D.
    4、C
    【解析】
    由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
    B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
    C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
    【详解】
    ∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
    ∴A、D选项不符合题意;
    B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
    ∴B选项不符合题意;
    C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
    ∴C选项符合题意.
    故选:C.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
    5、A
    【解析】
    连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
    【详解】
    连接BD,
    ∵四边形ABCD为矩形,
    ∴BD过圆心O,
    ∵∠BDC=∠BPC(圆周角定理)
    ∴cos∠BDC=cos∠BPC
    ∵BD为直径,
    ∴∠BCD=90°,
    ∵=,
    ∴设DC为x,
    则BC为2x,
    ∴BD===x,
    ∴cos∠BDC===,
    ∵cos∠BDC=cos∠BPC,
    ∴cos∠BPC=.
    故答案选A.

    【点睛】
    本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
    6、C
    【解析】
    若两个数的乘积是1,我们就称这两个数互为倒数.
    【详解】
    解:5的倒数是.
    故选C.
    7、C
    【解析】
    分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.
    详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.
    故选C.
    点睛:考查众数和中位数的概念,熟记概念是解题的关键.
    8、B
    【解析】
    先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
    【详解】
    由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
    【点睛】
    本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
    9、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    10、C
    【解析】
    求出<<,推出4<<5,即可得出答案.
    【详解】
    ∵<<,
    ∴4<<5,
    ∴的值是在4和5之间.
    故选:C.
    【点睛】
    本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
    11、B
    【解析】
    根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
    【详解】
    A、a3+a3=2a3,故A错误;
    B、a6÷a2=a4,故B正确;
    C、a3•a5=a8,故C错误;
    D、(a3)4=a12,故D错误.
    故选:B.
    【点睛】
    此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
    12、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查你所在班级同学的体重,采用普查,故A不符合题意;
    B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
    C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
    D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
    故选B.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    ∵点C是线段AD的中点,若CD=1,
    ∴AD=1×2=2,
    ∵点D是线段AB的中点,
    ∴AB=2×2=4,
    故答案为4.
    14、60°.
    【解析】
    先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
    【详解】
    ∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,
    ∴∠A=∠B=60°.
    ∴∠C=180°-∠A-∠B=180°-60°-60°=60°.
    故答案为60°.
    【点睛】
    本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
    15、(5,﹣8)
    【解析】
    各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.
    【详解】
    由A(-2,3)的对应点A′的坐标为(2,-13),
    坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,
    ∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;
    即所求点B′的坐标为(5,-8).
    故答案为(5,-8)
    【点睛】
    此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    16、(6,4)或(﹣4,﹣6)
    【解析】
    设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
    【详解】
    解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
    当点P在第一象限时,x+x-2=10,
    解得x=6,
    ∴x-2=4,
    ∴P(6,4);
    当点P在第三象限时,-x-x+2=10,
    解得x=-4,
    ∴x-2=-6,
    ∴P(-4,-6).
    故答案为:(6,4)或(-4,-6).
    【点睛】
    本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
    17、π﹣1.
    【解析】
    根据绝对值的性质即可解答.
    【详解】
    π﹣1的绝对值是π﹣1.
    故答案为π﹣1.
    【点睛】
    本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.
    18、1.
    【解析】
    先根据题意可证得△ABC∽△ADE,△ABC∽△AFG,再根据△ABC的面积为6分别求出△ADE与△AFG的面积,则四边形DFGE的面积=S△AFG-S△ADE.
    【详解】
    解:∵DE∥BC,,
    ∴△ADE∽△ABC,
    ∵AD=DF=FB,
    ∴=()1,即=()1,∴S△ADE=;
    ∵FG∥BC,∴△AFG∽△ABC,
    =()1,即=()1,∴S△AFG=;
    ∴S四边形DFGE= S△AFG- S△ADE=-=1.故答案为:1.
    【点睛】
    本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
    (2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
    (3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
    【详解】
    解:(1)证明:∵OA=OB,
    ∴∠OAB=∠OBA.
    ∵OA⊥CD,
    ∴∠OAB+∠AGC=90°.
    又∵∠FGB=∠FBG,∠FGB=∠AGC,
    ∴∠FBG+∠OBA=90°,即∠OBF=90°.
    ∴OB⊥FB.
    ∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
    (2)∵AC∥BF,
    ∴∠ACF=∠F.
    ∵CD=a,OA⊥CD,
    ∴CE=CD=a.
    ∵tan∠F=,
    ∴,
    即.
    解得.
    连接OC,设圆的半径为r,则,

    在Rt△OCE中,,
    即,
    解得.
    (3)证明:连接BD,
    ∵∠DBG=∠ACF,∠ACF=∠F(已证),
    ∴∠DBG=∠F.
    又∵∠FGB=∠FGB,
    ∴△BDG∽△FBG.
    ∴,即GB2=DG•GF.
    ∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
    20、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
    21、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是
    【解析】
    (1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;
    (1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.
    ①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;
    ②利用二次函数图象的对称性质解答即可.
    【详解】
    (1)当a=1,b=1时,m=1m1+4m+1﹣4,
    解得m=或m=﹣1.
    所以点P的坐标是(,)或(﹣1,﹣1);
    (1)m=am1+(3b+1)m+b﹣3,
    △=9b1﹣4ab+11a.
    ①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.
    ∴△=(﹣4a)1﹣4×9×11a<2.
    ∴2<a<17.
    ②由“和谐点”定义可设A(x1,y1),B(x1,y1),
    则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.
    ∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得
    ﹣=﹣(+1),
    ∴3b+1=+a.
    ∵a>2,>2,a•=1为定值,
    ∴3b+1=+a≥1=1,
    ∴b≥.
    ∴b的最小值是.
    【点睛】
    此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.
    22、见解析
    【解析】
    分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
    (2)分两种情况进行讨论即可.
    (3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
    详解:(1)易证,得,
    ∴OC=2,∴C(0,2),
    ∵抛物线过点A(-1,0),B(4,0)
    因此可设抛物线的解析式为
    将C点(0,2)代入得:,即
    ∴抛物线的解析式为
    (2)如图2,

    当时,则P1(,2),
    当 时,
    ∴OC∥l,
    ∴,
    ∴P2H=·OC=5,
    ∴P2 (,5)
    因此P点的坐标为(,2)或(,5).
    (3)存在.
    假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
    如图3,

    当平行四边形是平行四边形时,M(,),(,),
    当平行四边形AONM是平行四边形时,M(,),N(,),
    如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则

    ∵点N在抛物线上,
    ∴-m=-·(-+1)( --4)=-,
    ∴m=,
    此时M(,), N(-,-).
    综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
    点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
    23、(4)500;(4)440,作图见试题解析;(4)4.4.
    【解析】
    (4)利用0.5小时的人数除以其所占比例,即可求出样本容量;
    (4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;
    (4)计算出该市中小学生一天中阳光体育运动的平均时间即可.
    【详解】
    解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,
    ∴本次调查共抽样了500名学生;
    (4)4.5小时的人数为:500×4.4=440(人),如图所示:

    (4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.
    考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.
    24、 (1)见解析;(2)1
    【解析】
    分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
    详解:(1)证明:
    ∵ CD⊥AB于点D,BE⊥AB于点B,
    ∴ .
    ∴ CD∥BE.
    又∵ BE=CD,
    ∴ 四边形CDBE为平行四边形.
    又∵,
    ∴ 四边形CDBE为矩形.
    (2)解:∵ 四边形CDBE为矩形,
    ∴ DE=BC.
    ∵ 在Rt△ABC中,,CD⊥AB,
    可得 .
    ∵ ,
    ∴ .
    ∵ 在Rt△ABC中,,AC=2,,
    ∴ .
    ∴ DE=BC=1.
    点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
    25、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.
    【解析】
    试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
    (2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
    (3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
    (4)结合(3)中函数图象求得时s的值,做差即可求解;
    (5)求出函数图象的交点坐标即可求解.
    试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
    (2)(330﹣240)÷60=1.5(千米/分);
    (3)设L1为 把点(0,330),(60,240)代入得
    所以
    设L2为 把点(60,60)代入得

    所以
    (4)当时,
    330﹣150﹣120=60(千米);
    所以2小时后,两车相距60千米;
    (5)当时,
    解得
    即行驶132分钟,A、B两车相遇.
    26、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
    【解析】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
    (2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
    ②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
    【详解】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
    故答案为C.
    (2)①如图3-1中,作NH⊥x轴于H.

    ∵N(,-),
    ∴tan∠NOH=,
    ∴∠NOH=30°,
    ∠MON=90°+30°=120°,
    ∵点D是线段MN关于点O的关联点,
    ∴∠MDN+∠MON=180°,
    ∴∠MDN=60°.
    故答案为60°.
    ②如图3-2中,结论:△MNE是等边三角形.

    理由:作EK⊥x轴于K.
    ∵E(,1),
    ∴tan∠EOK=,
    ∴∠EOK=30°,
    ∴∠MOE=60°,
    ∵∠MON+∠MEN=180°,
    ∴M、O、N、E四点共圆,
    ∴∠MNE=∠MOE=60°,
    ∵∠MEN=60°,
    ∴∠MEN=∠MNE=∠NME=60°,
    ∴△MNE是等边三角形.
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,

    易知E(,1),
    ∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
    观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
    【点睛】
    此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
    27、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
    【解析】
    (1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
    (2)达标的学生人数=总人数×达标率,依此即可求解;
    (3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
    【详解】
    解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
    (2)(人).
    答:估计达标的学生有300人;
    (3)80×52÷260=16(本).
    答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
    【点睛】
    本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.

    相关试卷

    广东省韶关市南雄市2022年中考数学一模试题(含解析): 这是一份广东省韶关市南雄市2022年中考数学一模试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省韶关市南雄市2022年中考数学一模试题(含解析): 这是一份广东省韶关市南雄市2022年中考数学一模试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省韶关市南雄市重点中学2022年中考数学模试卷含解析: 这是一份广东省韶关市南雄市重点中学2022年中考数学模试卷含解析,共23页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map