广西河池市南丹县达标名校2021-2022学年中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m> B.m C.m= D.m=
2.下列所给函数中,y随x的增大而减小的是( )
A.y=﹣x﹣1 B.y=2x2(x≥0)
C. D.y=x+1
3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
4.下列运算正确的是( )
A. =2 B.4﹣=1 C.=9 D.=2
5.-5的相反数是( )
A.5 B. C. D.
6.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0 B.2.5 C.3 D.5
7.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
9.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
10.如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.
12.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.
13.如图,在平面直角坐标系中,抛物线可通过平移变换向__________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.
14.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
15.计算的结果等于_____________.
16.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.
三、解答题(共8题,共72分)
17.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
18.(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
19.(8分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
20.(8分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)
21.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.
(1)求证;∠BDC=∠A.
(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.
22.(10分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
求反比例函数和一次函数的表达式;求当时自变量的取值范围.
23.(12分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
(1)求证:AB为⊙C的切线.
(2)求图中阴影部分的面积.
24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少?
(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
2、A
【解析】
根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
【详解】
解:A.此函数为一次函数,y随x的增大而减小,正确;
B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
D.此函数为一次函数,y随x的增大而增大,错误.
故选A.
【点睛】
本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
3、C
【解析】
【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率=,
故选C.
【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
4、A
【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.
【详解】
A、原式=2,所以A选项正确;
B、原式=4-3=,所以B选项错误;
C、原式==3,所以C选项错误;
D、原式=,所以D选项错误.
故选A.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
5、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
6、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
【点睛】
本题考查中位数;算术平均数.
7、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
8、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
9、A
【解析】
首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.
【详解】
解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;
B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;
C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.
故选:A.
【点睛】
此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.
10、B
【解析】
由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.
【详解】
∵四边形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD•sin60°=6×=3,
∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×3=18-9π.
故选B.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
【详解】
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC,tan∠BOC==,
∴AB=2OA,
∵,OB=,
∴OA=2,AB=2.∵OA′由OA翻折得到,
∴OA′= OA=2.
如图,过点A′作A′D⊥x轴与点D;
设A′D=a,OD=b;
∵四边形ABCO为矩形,
∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
设AB=OC=a,BC=AO=b;
∵OB=,tan∠BOC=,
∴,
解得: ;
由题意得:A′O=AO=2;△ABO≌△A′BO;
由勾股定理得:x2+y2=2①,
由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
联立①②并解得:x=,y=.
故答案为(−,)
【点睛】
该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
12、1:1
【解析】
根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.
【详解】
∵S△BDE:S△CDE=1:3,
∴BE:EC=1:3,
∵DE∥AC,
∴△BED∽△BCA,
∴S△BDE:S△BCA=()2=1:16,
∴S△BDE:S四边形DECA=1:1,
故答案为1:1.
【点睛】
本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
13、先向右平移2个单位再向下平移2个单位; 4
【解析】
.
平移后顶点坐标是(2,-2),
利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.
14、1
【解析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
故填1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
15、a3
【解析】
试题解析:x5÷x2=x3.
考点:同底数幂的除法.
16、
【解析】
如图所示,过点作,交于点.
在菱形中,
∵,且,所以为等边三角形,
.
根据“等腰三角形三线合一”可得
,因为,所以.
在中,根据勾股定理可得,.
因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.
所以,所以,所以.
点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.
三、解答题(共8题,共72分)
17、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【解析】
试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
根据题意,2000x+2500(30-x)=68000,
解得x=14,
∴30-x=16,
答:种植A种生姜14亩,种植B种生姜16亩;
(2)由题意得,x≥(30-x),解得x≥10,
设全部收购该基地生姜的年总收入为y元,则
y=8×2000x+7×2500(30-x)=-1500x+525000,
∵y随x的增大而减小,∴当x=10时,y有最大值,
此时,30-x=20,y的最大值为510000元,
答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
18、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
19、(1);(2)k=-3
【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
【详解】
解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
解得
(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:
①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
解得k1=k2=1
∵
∴k1=k2=1不合题意,舍去
②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
解得k1=1,k2=-3
∵
∴k=-3
综合①、②可知k=-3
【点睛】
一元二次方程根与系数关系,根判别式.
20、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
【解析】
(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
(2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本问的抛物线解析式不止一个,求出其中一个.
【详解】
解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
当点A在x轴正半轴、点B在y轴负半轴上时,
∴AO=1,BO=1,
∴正方形ABCD的边长为 ,
当点A在x轴负半轴、点B在y轴正半轴上时,
设正方形的边长为a,得3a=,
∴ ,
所以伴侣正方形的边长为或;
(2)作DE、CF分别垂直于x、y轴,
知△ADE≌△BAO≌△CBF,
此时,m<2,DE=OA=BF=m
OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C点坐标为(2﹣m,2),
∴2m=2(2﹣m)
解得m=1,
反比例函数的解析式为y= ,
(3)根据题意画出图形,如图所示:
过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
则D坐标为(﹣1,3);
设过D与C的抛物线的解析式为:y=ax2+b,
把D和C的坐标代入得: ,
解得 ,
∴满足题意的抛物线的解析式为y=x2+ ;
同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
对应的抛物线分别为 ; ;,
所求的任何抛物线的伴侣正方形个数为偶数.
【点睛】
本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
21、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
22、 (1) ,;(2)或.
【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
【详解】
(1)把代入得.
∴反比例函数的表达式为
把和代入得,
解得
∴一次函数的表达式为.
(2)由得
∴当或时,.
【点睛】
本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
23、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
24、(1).(2).
【解析】
试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.
试题解析:(1)取出一个黑球的概率
(2)取出一个白球的概率
与的函数关系式为:.
考点:概率
广西河池市宜州区重点达标名校2022年中考数学模试卷含解析: 这是一份广西河池市宜州区重点达标名校2022年中考数学模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,若,,则的值是,如图所示的几何体的主视图是等内容,欢迎下载使用。
广西壮族自治区河池市南丹县2022年中考适应性考试数学试题含解析: 这是一份广西壮族自治区河池市南丹县2022年中考适应性考试数学试题含解析,共18页。试卷主要包含了下列各运算中,计算正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年广西河池市环江县市级名校中考五模数学试题含解析: 这是一份2021-2022学年广西河池市环江县市级名校中考五模数学试题含解析,共21页。